A method based on the combination of coprecipitation with inductively coupledplasma atomic emission spectrometry (ICP-AES) was developed for the determination of impurities inhigh-purity sodium tungstate. Six elements...A method based on the combination of coprecipitation with inductively coupledplasma atomic emission spectrometry (ICP-AES) was developed for the determination of impurities inhigh-purity sodium tungstate. Six elements (Co, Cu, Fe, Mn, Ni, and Pb) were coprecipitated bylanthanum hydroxide so as to be concentrated and separated from the tungsten matrix. Effects of somefactors on the recoveries of the analytes and on the residual amount of sodium tungstate wereinvestigated, and the optimum conditions for the coprecipitation were proposed. Matrix-matchingcalibration curve method was used for the analysis. It is shown that the elements mentioned abovecan be quantitatively recovered. The detection limits for Co, Cu, Fe, Mn, Ni, and Pb are 0.07, 0.4,0.2, 0.1, 0.6, and 1.3 μg·g^(-1), respectively. The recoveries vary from 92.5% to 108%, and therelative standard deviations (RSDs) are in the range of 3.1%-5.5%.展开更多
A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (K-m) of urease ...A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (K-m) of urease and apparent inhibition constant (K-i) of some metal ion inhibitors were measured respectively. This method was also used for the quantitative determination of metal ions with satisfactory result.展开更多
On-line dissolution of solid metal sample can be carried out by electrolysis under the control of flow injection analyzer(FIA),and the dissolved sample can be transferred to atomic spectrometer for the direct analysis...On-line dissolution of solid metal sample can be carried out by electrolysis under the control of flow injection analyzer(FIA),and the dissolved sample can be transferred to atomic spectrometer for the direct analysis.The hyphenated technique of FIA on-line electrolytic dissolution of alloy and atomic absorption spectrometer(AAS)detection is developed.The research is focused on the effects of electrolyte composition and electrolysis parameters on the sample dissolving,as well as the quantitative analysis of Cu in Al alloy samples.展开更多
A terahertz metamaterial sensor adopting the metamaterial-based electromagnetically induced transparency(EIT) effect is presented for determining the 1,4-dioxane concentration in its aqueous solution. The metamateri...A terahertz metamaterial sensor adopting the metamaterial-based electromagnetically induced transparency(EIT) effect is presented for determining the 1,4-dioxane concentration in its aqueous solution. The metamaterial sensor, which consists of an EIT element unit with a cut-wire metallic resonator and two split-ring metallic resonators fabricated on a 490-μm thick silicon substrate, operates in a transmission geometry. The EIT peak was red-shifted and decreased with the increase of the water volume. A maximum redshift about 54 GHz of the EIT peak was detected between the 1,4-dioxane and water. The presented linear behavior and high sensitivity of the EIT peak depending on the water concentration pave a novel avenue for sensor applications.展开更多
文摘A method based on the combination of coprecipitation with inductively coupledplasma atomic emission spectrometry (ICP-AES) was developed for the determination of impurities inhigh-purity sodium tungstate. Six elements (Co, Cu, Fe, Mn, Ni, and Pb) were coprecipitated bylanthanum hydroxide so as to be concentrated and separated from the tungsten matrix. Effects of somefactors on the recoveries of the analytes and on the residual amount of sodium tungstate wereinvestigated, and the optimum conditions for the coprecipitation were proposed. Matrix-matchingcalibration curve method was used for the analysis. It is shown that the elements mentioned abovecan be quantitatively recovered. The detection limits for Co, Cu, Fe, Mn, Ni, and Pb are 0.07, 0.4,0.2, 0.1, 0.6, and 1.3 μg·g^(-1), respectively. The recoveries vary from 92.5% to 108%, and therelative standard deviations (RSDs) are in the range of 3.1%-5.5%.
文摘A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (K-m) of urease and apparent inhibition constant (K-i) of some metal ion inhibitors were measured respectively. This method was also used for the quantitative determination of metal ions with satisfactory result.
文摘On-line dissolution of solid metal sample can be carried out by electrolysis under the control of flow injection analyzer(FIA),and the dissolved sample can be transferred to atomic spectrometer for the direct analysis.The hyphenated technique of FIA on-line electrolytic dissolution of alloy and atomic absorption spectrometer(AAS)detection is developed.The research is focused on the effects of electrolyte composition and electrolysis parameters on the sample dissolving,as well as the quantitative analysis of Cu in Al alloy samples.
基金supported by the National Basic Research Program of China under Grant No.2014CB339800
文摘A terahertz metamaterial sensor adopting the metamaterial-based electromagnetically induced transparency(EIT) effect is presented for determining the 1,4-dioxane concentration in its aqueous solution. The metamaterial sensor, which consists of an EIT element unit with a cut-wire metallic resonator and two split-ring metallic resonators fabricated on a 490-μm thick silicon substrate, operates in a transmission geometry. The EIT peak was red-shifted and decreased with the increase of the water volume. A maximum redshift about 54 GHz of the EIT peak was detected between the 1,4-dioxane and water. The presented linear behavior and high sensitivity of the EIT peak depending on the water concentration pave a novel avenue for sensor applications.