Sheet bulk metal forming processes have been widely developed to the facilitate manufacture of complicated 3D parts. However, there is still not enough know-how available. In this paper, as one of the typical sheet bu...Sheet bulk metal forming processes have been widely developed to the facilitate manufacture of complicated 3D parts. However, there is still not enough know-how available. In this paper, as one of the typical sheet bulk metal forming processes, the sheet metal extrusion process was studied. A reasonable finite element method (FEM) model of sheet metal extrusion process taking the influence of flow-stress curve with wide range of plastic strain and ductile damage into consideration was established and simulated by an arbitrary Lagrangian-Eulerian (ALE) FEM implemented in MSC.Marc. Validated by comparing the results with experiment, some phenomenological characteristics, such as metal flow behavior, shrinkage cavity, and the influence of different combinations of diameter of punch, diameter of extrusion outlet, and diameter of pre-punched hole were analyzed and concluded, which can be used as theoretical fundamental for the design of the sheet metal extrusion process.展开更多
The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the unia...The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming.展开更多
Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to...Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow behavior in die and microstructure and mechanical property of prodacts were investigated. It is shown that if the pouring temperature of melt was higher, the die was filled with semi-solid slurry with low solid fraction and periodical cracks would occur on the product surface ; If its pouring temperature was lower or the preheating temperature of die was lower, semisolid slurry would solidify rapidly and block the die after entering the cavity. The analysis of mass flow trace shows that the semi-solid slurry move forward layer by layer and fills the die extending cavity in radiation manner and the velocity of mass flow in the central area of extending cavity and exit of mould is the maximum, and then decreases gradually from the center to both sides of die wall. By inereasiug the die extending angle, the velocity of mass flow becomes more homogeneous. Under rational process control and die design, the A2017 fiat bar with transverse section of 10 × 50 mm and with good surface and fine equiaxed grains can be obtained by continuous extruding/extending forming process. The product's tensile strength and elongation are 420.5 MPa and 14.2% , respectively.展开更多
Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the sta...Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the statistics of some parameters,the shear avalanches can display a self-organized critical state,suggesting a large ductility of BMGs.The emergence of the self-organized criticality(SOC)behavior in different BMGs is due to the temperature,strain rate,and chemical compositions.The SOC behavior is accompanied with the following phenomena:the interactions occur in the shear bands;the incubation time is longer than the relaxation time;the time interval is lacking of typical time scale;and the spatial or temporal parameters should display apower-law distribution.展开更多
Multicomponent alloys with high entropy of mixing,e.g.,high entropy alloys(HEAs)and/or multiprincipal-element alloys(MEAs),are attracting increasing attentions,because the materials with novel properties are being...Multicomponent alloys with high entropy of mixing,e.g.,high entropy alloys(HEAs)and/or multiprincipal-element alloys(MEAs),are attracting increasing attentions,because the materials with novel properties are being developed,based on the design strategy of the equiatomic ratio,multicomponent,and high entropy of mixing in their liquid or random solution state.Recently,HEAs with the ultrahigh strength and fracture toughness,excellent magnetic properties,high fatigue,wear and corrosion resistance,great phase stability/high resistance to heat-softening behavior,sluggish diffusion effects,and potential superconductivity,etc.,were developed.The HEAs can even have very high irradiation resistance and may have some self-healing effects,and can potentially be used as the first wall and nuclear fuel cladding materials.Serration behaviors and flow units are powerful methods to understand the plastic deformation or fracture of materials.The methods have been successfully used to study the plasticity of amorphous alloys(also bulk metallic glasses,BMGs).The flow units are proposed as:free volumes,shear transition zones(STZs),tension-transition zones(TTZs),liquid-like regions,soft regions or soft spots,etc.The flow units in the crystalline alloys are usually dislocations,which may interact with the solute atoms,interstitial types,or substitution types.Moreover,the flow units often change with the testing temperatures and loading strain rates,e.g.,at the low temperature and high strain rate,plastic deformation will be carried out by the flow unit of twinning,and at high temperatures,the grain boundary will be the weak area,and play as the flow unit.The serration shapes are related to the types of flow units,and the serration behavior can be analyzed using the power law and modified power law.展开更多
基金supported by National Science & Technology Major Project of China (No. 2009ZX04014-073)National Natural Science Foundation of China (No. 50975175)
文摘Sheet bulk metal forming processes have been widely developed to the facilitate manufacture of complicated 3D parts. However, there is still not enough know-how available. In this paper, as one of the typical sheet bulk metal forming processes, the sheet metal extrusion process was studied. A reasonable finite element method (FEM) model of sheet metal extrusion process taking the influence of flow-stress curve with wide range of plastic strain and ductile damage into consideration was established and simulated by an arbitrary Lagrangian-Eulerian (ALE) FEM implemented in MSC.Marc. Validated by comparing the results with experiment, some phenomenological characteristics, such as metal flow behavior, shrinkage cavity, and the influence of different combinations of diameter of punch, diameter of extrusion outlet, and diameter of pre-punched hole were analyzed and concluded, which can be used as theoretical fundamental for the design of the sheet metal extrusion process.
基金supported by the Education Department of Shaanxi Province(14JK1351)the Principal Fund of Xi’an Technological University(0852-302021407)
文摘The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming.
基金Funded by the National Natural Science Foundation of China(No.50274020) and Baoshan Iron &Steel Corporation of Shanghai
文摘Continuous extruding/ extending formiug process for A2017 alloy in semi-solid state was proposed through installing extending die at the outlet of shearing- cooling- rolling (SCR) machine. A series of experiments to produce fiat bar of A2017 alloy were carried oat. The forming process, metal flow behavior in die and microstructure and mechanical property of prodacts were investigated. It is shown that if the pouring temperature of melt was higher, the die was filled with semi-solid slurry with low solid fraction and periodical cracks would occur on the product surface ; If its pouring temperature was lower or the preheating temperature of die was lower, semisolid slurry would solidify rapidly and block the die after entering the cavity. The analysis of mass flow trace shows that the semi-solid slurry move forward layer by layer and fills the die extending cavity in radiation manner and the velocity of mass flow in the central area of extending cavity and exit of mould is the maximum, and then decreases gradually from the center to both sides of die wall. By inereasiug the die extending angle, the velocity of mass flow becomes more homogeneous. Under rational process control and die design, the A2017 fiat bar with transverse section of 10 × 50 mm and with good surface and fine equiaxed grains can be obtained by continuous extruding/extending forming process. The product's tensile strength and elongation are 420.5 MPa and 14.2% , respectively.
基金Item Sponsored by National Natural Science Foundation of China(51371122)Program for the Innovative Talents of Higher Learning Institutions of Shanxi of China(2013)The Youth Natural Science Foundation of Shanxi Province of China(2015021005)
文摘Serrated flows are known as repeated yielding of bulk metallic glasses(BMGs)during plastic deformation under different loading conditions,which are associated with the operation of shear banding.According to the statistics of some parameters,the shear avalanches can display a self-organized critical state,suggesting a large ductility of BMGs.The emergence of the self-organized criticality(SOC)behavior in different BMGs is due to the temperature,strain rate,and chemical compositions.The SOC behavior is accompanied with the following phenomena:the interactions occur in the shear bands;the incubation time is longer than the relaxation time;the time interval is lacking of typical time scale;and the spatial or temporal parameters should display apower-law distribution.
基金Item Sponsored by National Natural Science Foundation of China(51471025,51210105006,51371122)
文摘Multicomponent alloys with high entropy of mixing,e.g.,high entropy alloys(HEAs)and/or multiprincipal-element alloys(MEAs),are attracting increasing attentions,because the materials with novel properties are being developed,based on the design strategy of the equiatomic ratio,multicomponent,and high entropy of mixing in their liquid or random solution state.Recently,HEAs with the ultrahigh strength and fracture toughness,excellent magnetic properties,high fatigue,wear and corrosion resistance,great phase stability/high resistance to heat-softening behavior,sluggish diffusion effects,and potential superconductivity,etc.,were developed.The HEAs can even have very high irradiation resistance and may have some self-healing effects,and can potentially be used as the first wall and nuclear fuel cladding materials.Serration behaviors and flow units are powerful methods to understand the plastic deformation or fracture of materials.The methods have been successfully used to study the plasticity of amorphous alloys(also bulk metallic glasses,BMGs).The flow units are proposed as:free volumes,shear transition zones(STZs),tension-transition zones(TTZs),liquid-like regions,soft regions or soft spots,etc.The flow units in the crystalline alloys are usually dislocations,which may interact with the solute atoms,interstitial types,or substitution types.Moreover,the flow units often change with the testing temperatures and loading strain rates,e.g.,at the low temperature and high strain rate,plastic deformation will be carried out by the flow unit of twinning,and at high temperatures,the grain boundary will be the weak area,and play as the flow unit.The serration shapes are related to the types of flow units,and the serration behavior can be analyzed using the power law and modified power law.