期刊文献+
共找到3,503篇文章
< 1 2 176 >
每页显示 20 50 100
Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia 被引量:1
1
作者 Daming Feng Lixue Zhou +3 位作者 Timothy J.White Anthony K.Cheetham Tianyi Ma Fengxia Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期205-240,共36页
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineere... Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions. 展开更多
关键词 metal–organic frameworks Electrosynthesis of ammonia Nitrogen reduction reactions Nitrate reduction reactions
下载PDF
Large-scale computational screening of metal–organic frameworks for D_(2)/H_(2) separation 被引量:1
2
作者 Fei Wang Zhiyuan Bi +1 位作者 Lifeng Ding Qingyuan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期323-330,共8页
Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown th... Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown that metal-organic frameworks(MOFs) are of good potential for D_(2)/H_(2) separation application. In this work, a high-throughput computational screening of 12020 computation-ready experimental MOFs is carried out to determine the best MOFs for hydrogen isotope separation application. Meanwhile, the detailed structure-performance correlation is systematically investigated with the aid of machine learning. The results indicate that the ideal D_(2)/H_(2) adsorption selectivity calculated based on Henry coefficient is strongly correlated with the 1/ΔAD feature descriptor;that is, inverse of the adsorbility difference of the two adsorbates. Meanwhile, the machine learning(ML) results show that the prediction accuracy of all the four ML methods is significantly improved after the addition of this feature descriptor. In addition, the ML results based on extreme gradient boosting model also revealed that the 1/ΔAD descriptor has the highest relative importance compared to other commonly-used descriptors. To further explore the effect of hydrogen isotope separation in binary mixture, 1548 MOFs with ideal adsorption selectivity greater than 1.5 are simulated at equimolar conditions. The structure-performance relationship shows that high adsorption selectivity MOFs generally have smaller pore size(0.3-0.5 nm) and lower surface area. Among the top 200 performers, the materials mainly have the sql, pcu, cds, hxl, and ins topologies.Finally, three MOFs with high D_(2)/H_(2) selectivity and good D_(2) uptake are identified as the best candidates,of all which had one-dimensional channel pore. The findings obtained in this work may be helpful for the identification of potentially promising candidates for hydrogen isotope separation. 展开更多
关键词 metal–organic frameworks Computational screening Hydrogen isotope separation
下载PDF
Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks 被引量:1
3
作者 Chaozhi Xiong Zhenwu Shao +3 位作者 Jia’nan Hong Kexin Bi Qingsong Huang Chong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2297-2309,共13页
This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordinatio... This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordination and covalent bonding adapted from metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),respectively.With an emphasis on the MCOF and CMOF structures,this review surveys their building blocks and topologies.Specifically,the frameworks are classified based on the dimensions of their components(building blocks),namely,discrete building blocks and one-dimensional infinite building blocks.For the first category,the materials are further divided into collections of two-and three-dimensional networks based on their topologies.For the second category,the recently emerging MCOFs with woven structures are covered.Finally,the state-of-the-art in MCOF and CMOF chemistry has been laid out for promising avenues in future developments. 展开更多
关键词 metal–covalent organic frameworks covalent metal-organic frameworks TOPOLOGY building block
下载PDF
Metal-organic frameworks with mixed-ligands strategy as heterogeneous nucleation center to assist crystallization for efficient and stable perovskite solar cells
4
作者 Yayu Dong Shuang Gai +9 位作者 Jian Zhang Ruiqing Fan Boyuan Hu Wei Wang Wei Cao Jiaqi Wang Ke Zhu Debin Xia Lin Geng Yulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期1-10,I0001,共11页
Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal... Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs. 展开更多
关键词 Perovskite solar cells metal organic frameworks Mixed ligands strategy Passivation Stability
下载PDF
Integrated electrocatalysts derived from metal organic frameworks for gas-involved reactions
5
作者 Yuke Song Wenfu Xie +1 位作者 Mingfei Shao Xue Duan 《Nano Materials Science》 EI CAS CSCD 2023年第2期161-176,共16页
Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high... Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field. 展开更多
关键词 Integrated electrocatalyst metal organic framework Structure-activity relationship Gas-involved reaction
下载PDF
Ethylene purification in a metal–organic framework over a wide temperature range via pore confinement
6
作者 Xue-Qian Wu Peng-Dan Zhang +4 位作者 Xin Zhang Jing-Hao Liu Tao He Jiamei Yu Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1703-1710,共8页
The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a... The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a microporous metal–organic framework(MOF) BUT-315-a as a C_(2)H_(6)-selective adsorbent for the separation of C2H6/C2H4gas mixture. BUT-315-a combines good IAST selectivity of 2.35 with high C_(2)H_(6)uptake of 97.5 cm^(3)g^(-1), giving superior high separation potential ΔQ(2226 mmol L^(-1)) for equimolar C_(2)H_(6)/C_(2)H_(4) at 298 K. Impressively, such excellent performance can be preserved at higher temperatures of 313 and 323 K to accommodate industrial conditions. Efficient dynamic separation performance of BUT-315-a has been demonstrated by column breakthrough experiments under varied temperatures and gas ratios. Theoretical calculations further reveal multiple synergistic interactions between C_(2)H_(6) and the framework. This work highlights a new benchmark material for C_(2)H_(6)/C_(2)H_(4)separation and provides guidance for designing adsorbent for separation applications. 展开更多
关键词 metal–organic framework Adsorptive separation Ethylene purification Temperature adaptability Pore confinement
下载PDF
Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes
7
作者 Tingzheng Hou Wentao Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期313-320,I0008,共9页
The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous st... The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous structure and tunable chemical functionality,have shown enormous potential as energy storage materials for accommodating or transporting electrochemically active ions.In this perspective,we specifically focus on the current status and prospects of anionic MOF-based quasi-solid-state-electrolytes(anionic MOF-QSSEs)for lithium metal batteries(LMBs).An overview of the definition,design,and properties of anionic MOF-QSSEs is provided,including recent advances in the understanding of their ion transport mechanism.To illustrate the advantages of using anionic MOF-QSSEs as electrolytes for LMBs,a thorough comparison between anionic MOF-QSSEs and other well-studied electrolyte systems is made.With these in-depth understandings,viable techniques for tuning the chemical and topological properties of anionic MOF-QSSEs to increase Li+conductivity are discussed.Beyond modulation of the MOFs matrix,we envisage that solvent and solid-electrolyte interphase design as well as emerging fabrication techniques will aid in the design and practical application of anionic MOF-QSSEs. 展开更多
关键词 Anionic metal–organic frameworks Quasi-solid-state electrolytes Ionic conduction Lithium metal batteries Lithium-ion batteries
下载PDF
A Review of Metal–Organic Framework-Based Compounds for Environmental Applications
8
作者 Yongteng Qian Fangfang Zhang +1 位作者 Dae Joon Kang Huan Pang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期303-332,共30页
Metal–organic framework-based compounds have recently gained great attention because of their unique porous structure,ordered porosity,and high specific surface area.Benefiting from these superior properties,metal–o... Metal–organic framework-based compounds have recently gained great attention because of their unique porous structure,ordered porosity,and high specific surface area.Benefiting from these superior properties,metal–organic framework-based compounds have been proven to be one of the most potential candidates for environmental governance and remediation.In this review,the different types of metal–organic framework-based compounds are first summarized.Further,the various environmental applications of metal–organic framework-based compounds including organic pollutant removal,toxic and hazardous gas capture,heavy metal ion detection,gas separation,water harvesting,air purification,and carbon dioxide reduction reactions are discussed in detail.In the end,the opportunities and challenges for the future development of metal–organic framework-based compounds for environmental applications are highlighted. 展开更多
关键词 air purification environmental governance and remediation metal–organic framework organic pollutant removal toxic and hazardous gas capture
下载PDF
Recent Progress in Synthesis, Mechanism and Applications of Zinc-Based Metal-Organic Frameworks for Fluorescent Sensing
9
作者 Xiaojing Mao Huachang Li +2 位作者 Jiemin Liu Yehong Shi Lijun Kuai 《American Journal of Analytical Chemistry》 2023年第9期390-409,共20页
As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are ... As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are inorganic-organic hybrids assembled from inorganic metal ions or clusters and suitable organic ligands. Zinc-based MOFs (Zn-MOFs) have emerged as one of the most promising sensory material of MOFs for practical applications, and attracted significant attention due to structural diversity and incomparable stability properties. However, there are few reviews on systemic summary of synthesis design, mechanism and application of Zn-MOFs. In this review, we summarize the synthesis design methods, structure types and luminescence mechanism of Zn-MOFs sensor recognition in the past ten years and their applications in metal cations, anions, organic compounds and other analytes. Finally, we present a short conclusion, and look forward to the future development direction of Zn-MOFs. 展开更多
关键词 metal-Organic frameworks POLLUTANTS Sensory Materials MECHANISM Application
下载PDF
Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing 被引量:22
10
作者 Xian Fang Boyang Zong Shun Mao 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期92-110,共19页
Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e.,high sensitivity, high selectivity, and reliability. Metal–o... Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e.,high sensitivity, high selectivity, and reliability. Metal–organic frameworks(MOFs), also known as porous coordination polymers, are a fascinating class of highly ordered crystalline coordination polymers formed by the coordination of metal ions/clusters and organic bridging linkers/ligands. Owing to their unique structures and properties,i.e., high surface area, tailorable pore size, high density of active sites, and high catalytic activity, various MOF-based sensing platforms have been reported for environmental contaminant detection including anions, heavy metal ions,organic compounds, and gases. In this review, recent progress in MOF-based environmental sensors is introduced with a focus on optical, electrochemical, and field-effect transistor sensors. The sensors have shown unique and promising performance in water and gas contaminant sensing. Moreover, by incorporation with other functional materials, MOF-based composites can greatly improve the sensor performance. The current limitations and future directions of MOF-based sensors are also discussed. 展开更多
关键词 metal–organic frameworks Environmental contaminant Optical sensor Electrochemical sensor Field-effect transistor sensor Micro- and nanostructure
下载PDF
Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers 被引量:8
11
作者 Ping Shao Luocai Yi +2 位作者 Shumei Chen Tianhua Zhou Jian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期156-170,I0006,共16页
Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MO... Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MOF)and their derived materials have extensively been developed as electrocatalysts for CO2 reduction owing to their unique structure including porosity,large specific surface area,and tunable chemical structures.In this review,the recent progress of MOF-based electrocatalysts for CO2 reduction was summarized and discussed.Detailed discussions mainly focus on the synthesis and mechanism of pristine MOFs and MOF-derived materials for electrocatalytic CO2 reduction.These examples are expected to provide clues to rational design and synthesis of stable and high-performance MOFs-based electrocatalysts for CO2 reduction. 展开更多
关键词 metal organic framework ELECTROCATALYST Carbon dioxides Reduction reaction NANOMATERIALS
下载PDF
Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal 被引量:19
12
作者 Bin Wang Lin-Hua Xie +3 位作者 Xiaoqing Wang Xiao-Min Liu Jinping Li Jian-Rong Li 《Green Energy & Environment》 SCIE 2018年第3期191-228,共38页
The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH... The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given. 展开更多
关键词 metal–organic frameworks Gas separation and storage Light hydrocarbon Harmful gas Air purification
下载PDF
Ultrathin 2D Metal–Organic Framework Nanosheets In situ Interpenetrated by Functional CNTs for Hybrid Energy Storage Device 被引量:7
13
作者 Feitian Ran Xueqing Xu +3 位作者 Duo Pan Yuyan Liu Yongping Bai Lu Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期1-13,共13页
The controllable construction of two-dimensional(2D)metal–organic framework(MOF)nanosheets with favorable electrochemical performances is greatly challenging for energy storage.Here,we design an in situ induced growt... The controllable construction of two-dimensional(2D)metal–organic framework(MOF)nanosheets with favorable electrochemical performances is greatly challenging for energy storage.Here,we design an in situ induced growth strategy to construct the ultrathin carboxylated carbon nanotubes(C-CNTs)interpenetrated nickel MOF(Ni-MOF/C-CNTs)nanosheets.The deliberate thickness and specific surface area of novel 2D hybrid nanosheets can be effectively tuned via finely controlling C-CNTs involvement.Due to the unique microstructure,the integrated 2D hybrid nanosheets are endowed with plentiful electroactive sites to promote the electrochemical performances greatly.The prepared Ni-MOF/C-CNTs nanosheets exhibit superior specific capacity of 680 C g^−1 at 1 A g^−1 and good capacity retention.The assembled hybrid device demonstrated the maximum energy density of 44.4 Wh kg^−1 at a power density of 440 W kg^−1.Our novel strategy to construct ultrathin 2D MOF with unique properties can be extended to synthesize various MOF-based functional materials for diverse applications. 展开更多
关键词 metal–organic frameworks Carbon nanotubes Ultrathin 2D nanosheets Hybrid supercapacitor
下载PDF
Metal–Organic Framework-Assisted Synthesis of Compact Fe_2O_3 Nanotubes in Co_3O_4 Host with Enhanced Lithium Storage Properties 被引量:8
14
作者 Song Lin Zhang Bu Yuan Guan +1 位作者 Hao Bin Wu Xiong Wen David Lou 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期70-78,共9页
Transition metal oxides are promising candidates for the high-capacity anode material in lithium-ion batteries.The electrochemical performance of transition metal oxides can be improved by constructing suitable compos... Transition metal oxides are promising candidates for the high-capacity anode material in lithium-ion batteries.The electrochemical performance of transition metal oxides can be improved by constructing suitable composite architectures. Herein, we demonstrate a metal–organic framework(MOF)-assisted strategy for the synthesis of a hierarchical hybrid nanostructure composed of Fe_2O_3 nanotubes assembled in Co_3O_4 host. Starting from MOF composite precursors(Fe-based MOF encapsulated in a Cobased host matrix), a complex structure of Co_3O_4 host and engulfed Fe_2O_3 nanotubes was prepared by a simple annealing treatment in air. By virtue of their structural and compositional features, these hierarchical composite particles reveal enhanced lithium storage properties when employed as anodes for lithium-ion batteries. 展开更多
关键词 metal–organic framework(MOF) Hierarchical structures Fe2O3 nanotubes CO3O4 Lithium-ion batteries(LIBs)
下载PDF
Magnetic metal organic framework for pre-concentration of ampicillin from cow milk samples 被引量:6
15
作者 Ahmad Reza Bagheri Mehrorang Ghaedi 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2020年第4期365-375,共11页
The aim of this study is a present of a simple solvothermal synthesis approach to preparation of Cu-based magnetic metal organic framework(MMOF)and subsequently its application as sorbent for ultrasound assisted magne... The aim of this study is a present of a simple solvothermal synthesis approach to preparation of Cu-based magnetic metal organic framework(MMOF)and subsequently its application as sorbent for ultrasound assisted magnetic solid phase extraction(UAMSPE)of ampicillin(AMP)from cow milk samples prior to high performance liquid chromatography-Ultraviolet(HPLC-UV)determination.Characteristics of prepared MMOF were fully investigated by different techniques which showed the exclusive properties of proposed sorbent in terms of proper functionality,desirable magnetic property and also high specific surface area.Different influential factors on extraction recovery including sorbent dosage,ultrasonic time,washing solvent volume and eluent solvent volume were assessed using central composite design(CCD)based response surface methodology(RSM)as an operative and powerful optimization tool.This is the first report for determination of AMP using MMOF.The proposed method addressed some drawbacks of other methods and sorbents for determination of AMP.The presented method decreases the extraction time(4 min)and also enhances adsorption capacity(250 mg/g).Moreover,the magnetic property of presented sorbent(15 emu/g)accelerates the extraction process which does not need filtration,centrifuge and precipitation procedures.Under the optimized conditions,the proposed method is applicable for linear range of 1.0-5000.0 μg/L with detection limit of 0.29 μg/L,satisfactory recoveries(≥95.0%)and acceptable repeatability(RSD less than 4.0%).The present study indicates highly promising perspectives of MMOF for highly effective analysis of AMP in complicated matrices. 展开更多
关键词 Magnetic metal organic framework Ultrasound assisted magnetic solid phase EXTRACTION AMPICILLIN Cow milk samples
下载PDF
Sulfonic groups functionalized Zr-metal organic framework for highly catalytic transfer hydrogenation of furfural to furfuryl alcohol 被引量:4
16
作者 Jingcheng Wu Dong Liang +4 位作者 Xiangbo Song Tingsen Liu Tianyi Xu Shuangyin Wang Yuqin Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期411-417,I0011,共8页
The highly selective catalytic transfer hydrogenation(CTH)of furfural(FF)to furfuryl alcohol(FOL)is a significant route of biomass valorization.Herein,a series microporous Zr-metal organic framework(ZrMOF)functionaliz... The highly selective catalytic transfer hydrogenation(CTH)of furfural(FF)to furfuryl alcohol(FOL)is a significant route of biomass valorization.Herein,a series microporous Zr-metal organic framework(ZrMOF)functionalized by sulfonic groups are prepared.Based on the comprehensive structural characterizations by means of X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),N2 physisorption,Thermogravimetric(TG)and Fourier transformed infrared spectroscopy(FTIR),we find that sulfonic acid(–SO_(3)H)functional groups are tethered on the UIO-66 without affecting the structure of the framework.Systematic characterizations(NH_(3)-TPD,CO_(2)-TPD,and in-situ FTIR)demonstrate that modifying of sulfonic groups on UIO-66 results in the formation of stronger Lewis acidic-basic and Brnsted acidis sites.The cooperative role of the versatile Lewis acidic-basic and Brnsted acidic sites in 60%mol fraction of sulfonic acid-containing UIO-66(UIO-S_(0.6))retain high surface area and exhibit excellent catalytic performance of 94.7%FOL yield and 16.9 h^(-1).turnover number(TOF)under mild conditions.Kinetic experiments reveal that the activation energy of the CTH of furfural(FF)over UIO-S_(0.6) catalyst is as low as 50.8 k J mol^(-1).Besides,the hydrogen transfer mechanism is investigated through isotope labeling experiments,exhibiting that theβ-H in isopropanol is transferred to the a-C of FF by forming six-membered intermediates on the Lewis acidic-basic and Brnsted acidic sites of the UIO-S_(0.6),which is the rate-determining step in the formation of FOL. 展开更多
关键词 HYDROGENATION BIOMASS metal organic framework BIOREFINERY
下载PDF
Recent Progress on Metal–Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials 被引量:7
17
作者 Jing Zhang Zhi Li +1 位作者 Xiao‑Lin Qi De‑Yi Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期173-193,共21页
High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,... High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,have been intensively employed as novel fire retardants(FRs)for a variety of polymers(MOF/polymer).The MOFs possessed abundant transition metal species,fire-retardant elements and potential carbon source accompanied with the facile tuning of the structure and property,making MOF,its derivatives and MOF hybrids promising for fire retardancy research.The recent progress and strategies to prepare MOF-based FRs are emphasized and summarized.The fire retardancy mechanisms of MOF/polymer composites are explained,which may guide the future design for efficient MOF-based FRs.Finally,the challenges and prospects related to different MOFbased FRs are also discussed and aim to provide a fast and holistic overview,which is beneficial for researchers to quickly get up to speed with the latest development in this field. 展开更多
关键词 metal–organic frameworks HYBRIDS POLYMERS COMPOSITES Fire retardancy
下载PDF
Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks 被引量:12
18
作者 Wenwen Zhan Liming Sun Xiguang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期5-32,共28页
Porous structures o er highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic framew... Porous structures o er highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic frameworks(MOFs) have been considered ideal precursors for well-designed semiconductors with porous structures and/or heterostructures, which have shown enhanced photocatalytic activities. In this review, we summarize the recent development of porous structures, such as metal oxides and metal sulfides, and their heterostructures, derived from MOF-based materials as catalysts for various light-driven energy-/environment-related reactions, including water splitting, CO_2 reduction, organic redox reaction, and pollution degradation. A summary and outlook section is also included. 展开更多
关键词 metal–organic frameworks DERIVATIVES POROUS structure PHOTOCATALYSIS
下载PDF
Hierarchical Metal-Organic Frameworks with Macroporosity:Synthesis, Achievements,and Challenges 被引量:9
19
作者 Huan VDoan Harina Amer Hamzah +2 位作者 Prasanth Karikkethu Prabhakaran Chiara Petrillo Valeska PTing 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期281-313,共33页
Introduction of multiple pore size regimes into metalorganic frameworks(MOFs)to form hierarchical porous structures can lead to improved performance of the material in various applications.In many cases,where interact... Introduction of multiple pore size regimes into metalorganic frameworks(MOFs)to form hierarchical porous structures can lead to improved performance of the material in various applications.In many cases,where interactions with bulky molecules are involved,enlarging the pore size of typically microporous MOF adsorbents or MOF catalysts is crucial for enhancing both mass transfer and molecular accessibility.In this review,we examine the range of synthetic strategies which have been reported thus far to prepare hierarchical MOFs or MOF composites with added macroporosity.These fabrication techniques can be either pre-or post-synthetic and include using hard or soft structural template agents,defect formation,routes involving supercritical CO2,and 3D printing.We also discuss potential applications and some of the challenges involved with current techniques,which must be addressed if any of these approaches are to be taken forward for industrial applications. 展开更多
关键词 metal-ORGANIC frameworks HIERARCHICAL MACROPOROUS Composites
下载PDF
Facile Synthesis of the Magnetic Metal Organic Framework Fe_3O_4@UiO-66-NH_2 for Separation of Strontium 被引量:3
20
作者 YIN Liang Liang KONG Xiang Yin +1 位作者 ZHANG Yao JI Yan Qin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2018年第6期483-488,共6页
A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of st... A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr^2+ in aqueous solution indicated that the adsorption of Sr^2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr^2+ conformed to the Freundlich isotherm model(R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide (90)Sr. 展开更多
关键词 Magnetic metal organic framework(MMOF) Fe3O4@UiO-66-NH2 RADIOACTIVITY STRONTIUM Adsorbents
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部