Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap leng...Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap length on the DC characteristics and analog/RF performance of CSP-TFET devices,such as the on-state current(I_(on)),ambipolar current(I_(amb)),transconductance(g_(m)),cut-off frequency(f_(T))and gain–bandwidth product(GBP),are analyzed and compared in this work.Also,a combination of both the dual-metal gate and gate–drain underlap designs has been proposed for the C-shaped pocket dual metal underlap TFET(CSP-DMUN-TFET),which contains a C-shaped pocket area that significantly increases the on-state current of the device;this combination design substantially reduces the ambipolar current.The results show that the CSP-DMUN-TFET demonstrates an excellent performance,including high I_(on)(9.03×10^(-4)A/μm),high I_(on)/I_(off)(~10^(11)),low SS_(avg)(~13 mV/dec),and low I_(amb)(2.15×10^(-17)A/μm).The CSP-DMUN-TFET has the capability to fully suppress ambipolar currents while maintaining high on-state currents,making it a potential replacement in the next generation of semiconductor devices.展开更多
Degradation induced by the negative bias temperature instability(NBTI)can be attributed to three mutually uncoupled physical mechanisms,i.e.,the generation of interface traps(ΔV_(IT)),hole trapping in pre-existing ga...Degradation induced by the negative bias temperature instability(NBTI)can be attributed to three mutually uncoupled physical mechanisms,i.e.,the generation of interface traps(ΔV_(IT)),hole trapping in pre-existing gate oxide defects(ΔV_(HT)),and the generation of gate oxide defects(ΔV_(OT)).In this work,the characteristic of NBTI for p-type MOSFET fabricated by using a 28-nm high-k metal gate(HKMG)process is thoroughly studied.The experimental results show that the degradation is enhanced at a larger stress bias and higher temperature.The effects of the three underlying subcomponents are evaluated by using the comprehensive models.It is found that the generation of interface traps dominates the NBTI degradation during long-time NBTI stress.Moreover,the NBTI parameters of the power-law time exponent and temperature activation energy as well as the gate oxide field acceleration are extracted.The dependence of operating lifetime on stress bias and temperature is also discussed.It is observed that NBTI lifetime significantly decreases as the stress increases.Furthermore,the decrease of charges related to interface traps and hole detrapping in pre-existing gate oxide defects are used to explain the recovery mechanism after stress.展开更多
The key technologies for the dual high-k and dual metal gate, such as the electrical optimization of metal insert poly-Si stack structure, the separating of high-k and metal gate of n/pMOS in different regions of the ...The key technologies for the dual high-k and dual metal gate, such as the electrical optimization of metal insert poly-Si stack structure, the separating of high-k and metal gate of n/pMOS in different regions of the wafer, and the synchronous etching of n/pMOS gate stack, are successfully developed. First, reasonable flat-band voltage and equivalent oxide thickness of pMOS MIPS structure are obtained by further optimizing the HfSiAlON dielectric through incorporating more Al-O dipole at interface between HfSiAlON and bottom SiOx. Then, the separating of high-k and metal gate for n/pMOS is achieved by SC1(NH4OH:H2O2:H2O = 1 : 1 : 5) and DHF-based solution for the selective removing of n MOS TaN and Hf Si ON and by BCl3-based plasma and DHF-based solution for the selective removing of pMOS TaN/Mo and HfSiAlON.After that, the synchronous etching of n/pMOS gate stack is developed by utilizing optimized BCl3/SF6/O2/Ar plasma to obtain a vertical profile for TaN and TaN/Mo and by utilizing BCl3/Ar plasma combined with DHF-based solution to achieve high selectivity to Si substrate. Finally, good electrical characteristics of CMOS devices, obtained by utilizing these new developed technologies, further confirm that they are practicable technologies for DHDMG integration.展开更多
Electrical properties of high quality ultra thin nitride/oxynitride(N/O)stack dielectrics pMOS capacitor with refractory metal gate electrode are investigated,and ultra thin (<2 nm) N/O stack gate dielectrics with ...Electrical properties of high quality ultra thin nitride/oxynitride(N/O)stack dielectrics pMOS capacitor with refractory metal gate electrode are investigated,and ultra thin (<2 nm) N/O stack gate dielectrics with significant low leakage current and high resistance to boron penetration are fabricated.Experiment results show that the stack gate dielectric of nitride/oxynitride combined with improved sputtered tungsten/titanium nitride (W/TiN) gate electrode is one of the candidates for deep sub-micron metal gate CMOS devices.展开更多
By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length a...By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.展开更多
This paper investigates the work function adjustment of a full silicidation (Ni-FUSI) metal gate. It is found that implanting dopant into poly-Si before silicidation can modulate the work function of a Ni-FUSI metal...This paper investigates the work function adjustment of a full silicidation (Ni-FUSI) metal gate. It is found that implanting dopant into poly-Si before silicidation can modulate the work function of a Ni-FUSI metal gate efficiently. With the implantation of p-type or n-type dopants,such as BF2 ,As,and P,the work function of a Ni-FUSI metal gate can be made higher or lower to satisfy the requirement of pMOS or nMOS, respectively. But implanting a high dose of As into a poly-Si gate before silicidation will cause the delamination effect and EOT loss,and thus As dopant is not suitable to be used to adjust the work function of a Ni-FUSI metal gate. Due to the EOT reduction in the FUSI Process,the gate leakage current of a FUSI metal gate capacitor is larger than that of a poly-Si gate capacitor.展开更多
The technique to improve the performance of W/TiN stacked gate MOS capacitor with 3nm gate oxide is reported by optimizing the sputtering process of a refractory metal gate electrode and adopting a proper anneal tempe...The technique to improve the performance of W/TiN stacked gate MOS capacitor with 3nm gate oxide is reported by optimizing the sputtering process of a refractory metal gate electrode and adopting a proper anneal temperature to eliminate the damages.Specific methods involved in the optimization of sputtering process include:selecting a proper TiN thickness to reduce stresses;using a smaller sputtering rate to suppress the damages to gate dielectric and adopting a higher N 2/Ar ratio during the TiN sputtering process to further nitride the gate dielectric.With these measures,excellent C V curves are obtained and surface state density ( N ss ) is successfully reduced to below 8×10 10 cm -2 ,which is comparable to the polysilicon gate MOS capacitor.展开更多
TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOd...TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOduct of the TIC14 and TMA reaction is TiA1C, and the components of C and A1 are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FFIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCI4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TIC14 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving A1 into the TiC film and leading to TiA1C formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and A1 in the TiA1C film. Thus, the film composition can be controlled by the growth temperature to a certain extent.展开更多
The decreasing feature sizes in complementary metal-oxide semiconductor (CMOS) transistor technology will require the replacement of SiO2 with gate dielectrics that have a high dielectric constant (high-k) because...The decreasing feature sizes in complementary metal-oxide semiconductor (CMOS) transistor technology will require the replacement of SiO2 with gate dielectrics that have a high dielectric constant (high-k) because as the SiO2 gate thickness is reduced below 1.4 nm, electron tunnelling effects and high leakage currents occur in SiO2, which present serious obstacles to future device reliability. In recent years significant progress has been made on the screening and selection of high-k gate dielectrics, understanding their physical properties, and their integration into CMOS technology. Now the family of hafnium oxide-based materials has emerged as the leading candidate for high-k gate dielectrics due to their excellent physical properties. It is also realized that the high-k oxides must be implemented in conjunction with metal gate electrodes to get sufficient potential for CMOS continue scaling. In the advanced nanoscale Si-based CMOS devices, the composition and thickness of interfacial layers in the gate stacks determine the critical performance of devices. Therefore, detailed atomic- scale understandings of the microstructures and interfacial structures built in the advanced CMOS gate stacks, are highly required. In this paper, several high-resolution electron, ion, and photon-based techniques currently used to characterize the high-k gate dielectrics and interfaces at atomic-scale, are reviewed. Particularly, we critically review the research progress on the characterization of interface behavior and structural evolution in the high-k gate dielectrics by high-resolution transmission electron microscopy (HRTEM) and the related techniques based on scanning transmission electron microscopy (STEM), including high-angle annular dark- field (HAADF) imaging (also known as Z-contrast imaging), electron energy-loss spectroscopy (EELS), and energy dispersive X-ray spectroscopy (EDS), due to that HRTEM and STEM have become essential metrology tools for characterizing the dielectric gate stacks in the present and future generations of CMOS devices. In Section 1 of this review, the working principles of each technique are briefly introduced and their key features are outlined. In Section 2, microstructural characterizations of high-k gate dielectrics at atomic-scale by electron microscopy are critically reviewed by citing some recent results reported on high-k gate dielectrics. In Section 3, metal gate electrodes and the interfacial structures between high-k dielectrics and metal gates are discussed. The electron beam damage effects in high-k gate stacks are also evaluated, and their origins and prevention are described in Section 4. Finally, we end this review with personal perspectives towards the future challenges of atomic-scale material characterization in advanced CMOS gate stacks.展开更多
High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to ...High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to the breakdown characteristic.In this work,a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up,and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation.It is found that all degradation factors,such as trap generation rate time exponent m,Weibull slope β and percolation factor s,each could be expressed as a function of trap density time exponent α.Based on the percolation relation and power law lifetime projection,a temperature related trap generation model is proposed.The validity of this model is confirmed by comparing with experiment results.For other device and material conditions,the percolation relation provides a new way to study the relationship between trap generation and lifetime projection.展开更多
Strained-Si0.73Ge0.27 channels are successfully integrated with high-R/metal gates in p-type metai-oxide- semi- conductor field effect transistors (pMOSFETs) using the replacement post-gate process. A silicon cap an...Strained-Si0.73Ge0.27 channels are successfully integrated with high-R/metal gates in p-type metai-oxide- semi- conductor field effect transistors (pMOSFETs) using the replacement post-gate process. A silicon cap and oxide inter layers are inserted between Si0.73Ge0.27 and high-κ dielectric to improve the interface. The fab- ricated Si0.73Ge0.27 pMOSFETs with gate length of 3Onto exhibit good performance with high drive current (~428μA/μm at VDD = 1 V) and suppressed short-channel effects (DIBL^77mV/V and SS^90mV/decade). It is found that the enhancement of effective hole mobility is up to 200% in long-gate-length Si0.73Ge0.27-channel pMOSFETs compared with the corresponding silicon transistors. The improvement of device performance is reduced due to strain relaxation as the gate length decreases, while 26% increase of the drive current is still obtained for 30-nm-gate-length Si0.73Ge0.27 devices.展开更多
The thickness effect of the TiN capping layer on the time dependent dielectric breakdown(TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper.Based on experimental results,i...The thickness effect of the TiN capping layer on the time dependent dielectric breakdown(TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper.Based on experimental results,it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer.From the charge pumping measurement and secondary ion mass spectroscopy(SIMS) analysis,it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density.In addition,the influences of interface and bulk trap density ratio Nit/Not are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo(kMC) method.The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses.展开更多
A multi-deposition multi-annealing technique (MDMA) is introduced into the process of high-k/metal gate MOSFET for the gate last process to effectively reduce the gate leakage and improve the device's performance. ...A multi-deposition multi-annealing technique (MDMA) is introduced into the process of high-k/metal gate MOSFET for the gate last process to effectively reduce the gate leakage and improve the device's performance. In this paper, we systematically investigate the electrical parameters and the time-dependent dielectric breakdown (TDDB) characteristics of positive channel metal oxide semiconductor (PMOS) under different MDMA process conditions, including the depo- sition/annealing (D&A) cycles, the D&A time, and the total annealing time. The results show that the increases of the number of D&A cycles (from 1 to 2) and D&A time (from 15 s to 30 s) can contribute to the results that the gate leakage current decreases by about one order of magnitude and that the time to fail (TTF) at 63.2% increases by about several times. However, too many D&A cycles (such as 4 cycles) make the equivalent oxide thickness (EOT) increase by about 1A and the TTF of PMOS worsen. Moreover, different D&A times and numbers of D&A cycles induce different breakdown mechanisms.展开更多
The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on parti...The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad,pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP.展开更多
The appropriate wet etch process for the selective removal of TaN on the HfSiON dielectric with an amorphous-silicon(a-Si) hardmask is presented.SCI(NH4OH:H2O2:H2O),which can achieve reasonable etch rates for me...The appropriate wet etch process for the selective removal of TaN on the HfSiON dielectric with an amorphous-silicon(a-Si) hardmask is presented.SCI(NH4OH:H2O2:H2O),which can achieve reasonable etch rates for metal gates and very high selectivity to high-k dielectrics and hardmask materials,is chosen as the TaN etchant. Compared with the photoresist mask and the tetraethyl orthosilicate(TEOS) hardmask,the a-Si hardmask is a better choice to achieve selective removal of TaN on the HfSiON dielectric because it is impervious to the SC1 etchant and can be readily etched with NH4OH solution without attacking the TaN and the HfSiON film.In addition,the surface of the HfSiON dielectric is smooth after the wet etching of the TaN metal gate and a-Si hardmask removal,which could prevent device performance degradation.Therefore,the wet etching of TaN with the a-Si hardmask can be applied to dual metal gate integration for the selective removal of the first TaN metal gate deposition.展开更多
ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are inves- tigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stac...ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are inves- tigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stack treated by conventional one-time deposition and annealing (D&A), devices receiving MDMA show a signif- icant reduction in leakage current. Meanwhile, EOT growth is effectively controlled by the Ti scavenging layer. This improvement strongly correlates with the cycle number of D&A (while keeping the total annealing time and total dielectrics thickness the same). Transmission electron microscope and energy-dispersive X-ray spectroscopy analysis suggests that oxygen incorporation into both the high-k film and the interfacial layer is likely to be re- sponsible for the improvement of the device. This novel MDMA is promising for the development of gate stack technology in a gate last integration scheme.展开更多
A theoretical model of flatband voltage (VFB) of metal/high-k/Si02/Si stack is proposed based on band alignment of entire gate stack, i.e., the VFB is obtained by simultaneously considering band alignments of metal/...A theoretical model of flatband voltage (VFB) of metal/high-k/Si02/Si stack is proposed based on band alignment of entire gate stack, i.e., the VFB is obtained by simultaneously considering band alignments of metal/high-k, high-k/SiO2 and SiO2/Si interfaces, and their interactions. Then the VFB of TiN/HfO2/SiO2/Si stack is experimentally obtained and theoretically investigated by this model. The theoretical calculations are in good agreement with the experimental results. Furthermore, both positive VFB shift of TiN/HfO2/SiO2/Si stack and Fermi level pinning are successfully interpreted and attributed to the dielectric contact induced gap states at TiN/HfO2 and HfO2/SiO2 interfaces.展开更多
In metal-gate/high-k stacks adopted by the 45 nm technology node, the fiat-band voltage (Vfb) shift remains one of the most critical challenges, particularly the flat-band voltage roll-off (Vfb roll-off) phenomeno...In metal-gate/high-k stacks adopted by the 45 nm technology node, the fiat-band voltage (Vfb) shift remains one of the most critical challenges, particularly the flat-band voltage roll-off (Vfb roll-off) phenomenon in p-channel metal- oxide-semiconductor (pMOS) devices with an ultrathin oxide layer. In this paper, recent progress on the investigation of the Vfb shift and the origin of the Vfb roll-off in the metal-gate/high-k pMOS stacks are reviewed. Methods that can alleviate the Vfb shift phenomenon are summarized and the future research trend is described.展开更多
Planarization used in a gate-last CMOS device was successfully developed by particular technologies of SOG two-step plasma etch-back plus one special etch-back step for SOG/SiO_2 interface trimming.The within-the-wafe...Planarization used in a gate-last CMOS device was successfully developed by particular technologies of SOG two-step plasma etch-back plus one special etch-back step for SOG/SiO_2 interface trimming.The within-the-wafer ILD thickness non-uniformity can reach 4.19%with a wafer edge exclusion of 5 mm.SEM results indicated that there was little"dish effect"on the 0.4μm gate-stack structure and finally achieved a good planarization profile on the whole substrate.The technology provided a CMP-less process basis for sub-100 nm high-k/metal gate-last CMOS integration.展开更多
The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series ...The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series resistance components extracted from the Fowler-Nordheim tunneling relation are attributed to the spreading resistance due to the asymmetry electrodes. Based on a series model to eliminate the series resistance effect, an area acceleration dependence is obtained by correcting the TZDB results. The area dependence follows Poisson area scaling rules, which indicates that the mechanism of TZDB is the same as TDDB and could be considered as a trap generation process.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52177185 and 62174055)。
文摘Dual-metal gate and gate–drain underlap designs are introduced to reduce the ambipolar current of the device based on the C-shaped pocket TFET(CSP-TFET).The effects of gate work function and gate–drain underlap length on the DC characteristics and analog/RF performance of CSP-TFET devices,such as the on-state current(I_(on)),ambipolar current(I_(amb)),transconductance(g_(m)),cut-off frequency(f_(T))and gain–bandwidth product(GBP),are analyzed and compared in this work.Also,a combination of both the dual-metal gate and gate–drain underlap designs has been proposed for the C-shaped pocket dual metal underlap TFET(CSP-DMUN-TFET),which contains a C-shaped pocket area that significantly increases the on-state current of the device;this combination design substantially reduces the ambipolar current.The results show that the CSP-DMUN-TFET demonstrates an excellent performance,including high I_(on)(9.03×10^(-4)A/μm),high I_(on)/I_(off)(~10^(11)),low SS_(avg)(~13 mV/dec),and low I_(amb)(2.15×10^(-17)A/μm).The CSP-DMUN-TFET has the capability to fully suppress ambipolar currents while maintaining high on-state currents,making it a potential replacement in the next generation of semiconductor devices.
文摘Degradation induced by the negative bias temperature instability(NBTI)can be attributed to three mutually uncoupled physical mechanisms,i.e.,the generation of interface traps(ΔV_(IT)),hole trapping in pre-existing gate oxide defects(ΔV_(HT)),and the generation of gate oxide defects(ΔV_(OT)).In this work,the characteristic of NBTI for p-type MOSFET fabricated by using a 28-nm high-k metal gate(HKMG)process is thoroughly studied.The experimental results show that the degradation is enhanced at a larger stress bias and higher temperature.The effects of the three underlying subcomponents are evaluated by using the comprehensive models.It is found that the generation of interface traps dominates the NBTI degradation during long-time NBTI stress.Moreover,the NBTI parameters of the power-law time exponent and temperature activation energy as well as the gate oxide field acceleration are extracted.The dependence of operating lifetime on stress bias and temperature is also discussed.It is observed that NBTI lifetime significantly decreases as the stress increases.Furthermore,the decrease of charges related to interface traps and hole detrapping in pre-existing gate oxide defects are used to explain the recovery mechanism after stress.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA010601)
文摘The key technologies for the dual high-k and dual metal gate, such as the electrical optimization of metal insert poly-Si stack structure, the separating of high-k and metal gate of n/pMOS in different regions of the wafer, and the synchronous etching of n/pMOS gate stack, are successfully developed. First, reasonable flat-band voltage and equivalent oxide thickness of pMOS MIPS structure are obtained by further optimizing the HfSiAlON dielectric through incorporating more Al-O dipole at interface between HfSiAlON and bottom SiOx. Then, the separating of high-k and metal gate for n/pMOS is achieved by SC1(NH4OH:H2O2:H2O = 1 : 1 : 5) and DHF-based solution for the selective removing of n MOS TaN and Hf Si ON and by BCl3-based plasma and DHF-based solution for the selective removing of pMOS TaN/Mo and HfSiAlON.After that, the synchronous etching of n/pMOS gate stack is developed by utilizing optimized BCl3/SF6/O2/Ar plasma to obtain a vertical profile for TaN and TaN/Mo and by utilizing BCl3/Ar plasma combined with DHF-based solution to achieve high selectivity to Si substrate. Finally, good electrical characteristics of CMOS devices, obtained by utilizing these new developed technologies, further confirm that they are practicable technologies for DHDMG integration.
文摘Electrical properties of high quality ultra thin nitride/oxynitride(N/O)stack dielectrics pMOS capacitor with refractory metal gate electrode are investigated,and ultra thin (<2 nm) N/O stack gate dielectrics with significant low leakage current and high resistance to boron penetration are fabricated.Experiment results show that the stack gate dielectric of nitride/oxynitride combined with improved sputtered tungsten/titanium nitride (W/TiN) gate electrode is one of the candidates for deep sub-micron metal gate CMOS devices.
文摘By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.
文摘This paper investigates the work function adjustment of a full silicidation (Ni-FUSI) metal gate. It is found that implanting dopant into poly-Si before silicidation can modulate the work function of a Ni-FUSI metal gate efficiently. With the implantation of p-type or n-type dopants,such as BF2 ,As,and P,the work function of a Ni-FUSI metal gate can be made higher or lower to satisfy the requirement of pMOS or nMOS, respectively. But implanting a high dose of As into a poly-Si gate before silicidation will cause the delamination effect and EOT loss,and thus As dopant is not suitable to be used to adjust the work function of a Ni-FUSI metal gate. Due to the EOT reduction in the FUSI Process,the gate leakage current of a FUSI metal gate capacitor is larger than that of a poly-Si gate capacitor.
文摘The technique to improve the performance of W/TiN stacked gate MOS capacitor with 3nm gate oxide is reported by optimizing the sputtering process of a refractory metal gate electrode and adopting a proper anneal temperature to eliminate the damages.Specific methods involved in the optimization of sputtering process include:selecting a proper TiN thickness to reduce stresses;using a smaller sputtering rate to suppress the damages to gate dielectric and adopting a higher N 2/Ar ratio during the TiN sputtering process to further nitride the gate dielectric.With these measures,excellent C V curves are obtained and surface state density ( N ss ) is successfully reduced to below 8×10 10 cm -2 ,which is comparable to the polysilicon gate MOS capacitor.
基金Project supported by the Key Technology Study for 16/14 nm Program of the Ministry of Science and Technology of China(Grant No.2013ZX02303)
文摘TiAIC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atorr/ic layer deposition method using TiCI4 and AI(CH3) 3 (TMA) as precursors. It is found that the major PrOduct of the TIC14 and TMA reaction is TiA1C, and the components of C and A1 are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FFIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCI4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TIC14 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving A1 into the TiC film and leading to TiA1C formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and A1 in the TiA1C film. Thus, the film composition can be controlled by the growth temperature to a certain extent.
基金support from Natural Science Foundation of Jiangsu Province (ProjectNo. BK2007130)National Natural Science Foundation of China (Grant Nos. 10874065, 60576023 and 60636010)+3 种基金Ministry of Science and Technology of China (Grant No.2009CB929503)Ministry of Science and Technology of China (Grant Nos. 2009CB929503 and2009ZX02101-4)the project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education MinistryNational Found for Fostering Talents of Basic Science (NFFTBS) (ProjectNo. J0630316)
文摘The decreasing feature sizes in complementary metal-oxide semiconductor (CMOS) transistor technology will require the replacement of SiO2 with gate dielectrics that have a high dielectric constant (high-k) because as the SiO2 gate thickness is reduced below 1.4 nm, electron tunnelling effects and high leakage currents occur in SiO2, which present serious obstacles to future device reliability. In recent years significant progress has been made on the screening and selection of high-k gate dielectrics, understanding their physical properties, and their integration into CMOS technology. Now the family of hafnium oxide-based materials has emerged as the leading candidate for high-k gate dielectrics due to their excellent physical properties. It is also realized that the high-k oxides must be implemented in conjunction with metal gate electrodes to get sufficient potential for CMOS continue scaling. In the advanced nanoscale Si-based CMOS devices, the composition and thickness of interfacial layers in the gate stacks determine the critical performance of devices. Therefore, detailed atomic- scale understandings of the microstructures and interfacial structures built in the advanced CMOS gate stacks, are highly required. In this paper, several high-resolution electron, ion, and photon-based techniques currently used to characterize the high-k gate dielectrics and interfaces at atomic-scale, are reviewed. Particularly, we critically review the research progress on the characterization of interface behavior and structural evolution in the high-k gate dielectrics by high-resolution transmission electron microscopy (HRTEM) and the related techniques based on scanning transmission electron microscopy (STEM), including high-angle annular dark- field (HAADF) imaging (also known as Z-contrast imaging), electron energy-loss spectroscopy (EELS), and energy dispersive X-ray spectroscopy (EDS), due to that HRTEM and STEM have become essential metrology tools for characterizing the dielectric gate stacks in the present and future generations of CMOS devices. In Section 1 of this review, the working principles of each technique are briefly introduced and their key features are outlined. In Section 2, microstructural characterizations of high-k gate dielectrics at atomic-scale by electron microscopy are critically reviewed by citing some recent results reported on high-k gate dielectrics. In Section 3, metal gate electrodes and the interfacial structures between high-k dielectrics and metal gates are discussed. The electron beam damage effects in high-k gate stacks are also evaluated, and their origins and prevention are described in Section 4. Finally, we end this review with personal perspectives towards the future challenges of atomic-scale material characterization in advanced CMOS gate stacks.
基金supported by the National High Technology Research and Development Program of China(Grant No.SS2015AA010601)the National Natural Science Foundation of China(Grant Nos.61176091 and 61306129)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Micro Electronics of Chinese Academy of Sciences
文摘High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to the breakdown characteristic.In this work,a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up,and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation.It is found that all degradation factors,such as trap generation rate time exponent m,Weibull slope β and percolation factor s,each could be expressed as a function of trap density time exponent α.Based on the percolation relation and power law lifetime projection,a temperature related trap generation model is proposed.The validity of this model is confirmed by comparing with experiment results.For other device and material conditions,the percolation relation provides a new way to study the relationship between trap generation and lifetime projection.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00605the National Natural Science Foundation of China under Grant No 61404165
文摘Strained-Si0.73Ge0.27 channels are successfully integrated with high-R/metal gates in p-type metai-oxide- semi- conductor field effect transistors (pMOSFETs) using the replacement post-gate process. A silicon cap and oxide inter layers are inserted between Si0.73Ge0.27 and high-κ dielectric to improve the interface. The fab- ricated Si0.73Ge0.27 pMOSFETs with gate length of 3Onto exhibit good performance with high drive current (~428μA/μm at VDD = 1 V) and suppressed short-channel effects (DIBL^77mV/V and SS^90mV/decade). It is found that the enhancement of effective hole mobility is up to 200% in long-gate-length Si0.73Ge0.27-channel pMOSFETs compared with the corresponding silicon transistors. The improvement of device performance is reduced due to strain relaxation as the gate length decreases, while 26% increase of the drive current is still obtained for 30-nm-gate-length Si0.73Ge0.27 devices.
基金supported by the National High Technology Research and Development Program of China(Grant No.SS2015AA010601)the National Natural Science Foundation of China(Grant Nos.61176091 and 61306129)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Micro Electronics of Chinese Academy of Sciences
文摘The thickness effect of the TiN capping layer on the time dependent dielectric breakdown(TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper.Based on experimental results,it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer.From the charge pumping measurement and secondary ion mass spectroscopy(SIMS) analysis,it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density.In addition,the influences of interface and bulk trap density ratio Nit/Not are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo(kMC) method.The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses.
基金supported by the National High Technology Research and Development Program of China(Grant No.SS2015AA010601)the National Natural Science Foundation of China(Grant Nos.61176091 and 61306129)
文摘A multi-deposition multi-annealing technique (MDMA) is introduced into the process of high-k/metal gate MOSFET for the gate last process to effectively reduce the gate leakage and improve the device's performance. In this paper, we systematically investigate the electrical parameters and the time-dependent dielectric breakdown (TDDB) characteristics of positive channel metal oxide semiconductor (PMOS) under different MDMA process conditions, including the depo- sition/annealing (D&A) cycles, the D&A time, and the total annealing time. The results show that the increases of the number of D&A cycles (from 1 to 2) and D&A time (from 15 s to 30 s) can contribute to the results that the gate leakage current decreases by about one order of magnitude and that the time to fail (TTF) at 63.2% increases by about several times. However, too many D&A cycles (such as 4 cycles) make the equivalent oxide thickness (EOT) increase by about 1A and the TTF of PMOS worsen. Moreover, different D&A times and numbers of D&A cycles induce different breakdown mechanisms.
基金Project supported by the Major National Science and Technology Special Projects(No.2009ZX02308)the Natural Science Foundation for the Youth of Hebei Province(Nos.F2012202094,F2015202267)the Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology(No.2013010)
文摘The replacement metal gate(RMG) defectivity performance control is very challenging in high-k metal gate(HKMG) chemical mechanical polishing(CMP). In this study, three major defect types, including fall-on particles, micro-scratch and corrosion have been investigated. The research studied the effects of polishing pad,pressure, rotating speed, flow rate and post-CMP cleaning on the three kinds of defect, which finally eliminated the defects and achieved good surface morphology. This study will provide an important reference value for the future research of aluminum metal gate CMP.
基金Project supported by the Special Funds for Major State Basic Research Project of China(No.2006CB302704)the National Natural Science Foundation of China(No.60776030)
文摘The appropriate wet etch process for the selective removal of TaN on the HfSiON dielectric with an amorphous-silicon(a-Si) hardmask is presented.SCI(NH4OH:H2O2:H2O),which can achieve reasonable etch rates for metal gates and very high selectivity to high-k dielectrics and hardmask materials,is chosen as the TaN etchant. Compared with the photoresist mask and the tetraethyl orthosilicate(TEOS) hardmask,the a-Si hardmask is a better choice to achieve selective removal of TaN on the HfSiON dielectric because it is impervious to the SC1 etchant and can be readily etched with NH4OH solution without attacking the TaN and the HfSiON film.In addition,the surface of the HfSiON dielectric is smooth after the wet etching of the TaN metal gate and a-Si hardmask removal,which could prevent device performance degradation.Therefore,the wet etching of TaN with the a-Si hardmask can be applied to dual metal gate integration for the selective removal of the first TaN metal gate deposition.
基金Project supported by the Integrated Circuit Advanced Process Center,Institute of Microelectronics of Chinese Academy of Sciences,and the Ministry of Technology,China
文摘ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are inves- tigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stack treated by conventional one-time deposition and annealing (D&A), devices receiving MDMA show a signif- icant reduction in leakage current. Meanwhile, EOT growth is effectively controlled by the Ti scavenging layer. This improvement strongly correlates with the cycle number of D&A (while keeping the total annealing time and total dielectrics thickness the same). Transmission electron microscope and energy-dispersive X-ray spectroscopy analysis suggests that oxygen incorporation into both the high-k film and the interfacial layer is likely to be re- sponsible for the improvement of the device. This novel MDMA is promising for the development of gate stack technology in a gate last integration scheme.
基金supported by the National Natural Science of China(Grant Nos.61176091 and 50932001)
文摘A theoretical model of flatband voltage (VFB) of metal/high-k/Si02/Si stack is proposed based on band alignment of entire gate stack, i.e., the VFB is obtained by simultaneously considering band alignments of metal/high-k, high-k/SiO2 and SiO2/Si interfaces, and their interactions. Then the VFB of TiN/HfO2/SiO2/Si stack is experimentally obtained and theoretically investigated by this model. The theoretical calculations are in good agreement with the experimental results. Furthermore, both positive VFB shift of TiN/HfO2/SiO2/Si stack and Fermi level pinning are successfully interpreted and attributed to the dielectric contact induced gap states at TiN/HfO2 and HfO2/SiO2 interfaces.
基金Project supported by the National Natural Science Foundation of China (Grants Nos.50802005 and 11074020)the Program for New Century Excellent Talents in University,China (Grant No.NCET-08-0029)+1 种基金the Ph.D.Program Foundation of Ministry of Education of China (Grant No.200800061055)the Hong Kong Research Grants Council General Research Funds,China (Grant No.CityU112608)
文摘In metal-gate/high-k stacks adopted by the 45 nm technology node, the fiat-band voltage (Vfb) shift remains one of the most critical challenges, particularly the flat-band voltage roll-off (Vfb roll-off) phenomenon in p-channel metal- oxide-semiconductor (pMOS) devices with an ultrathin oxide layer. In this paper, recent progress on the investigation of the Vfb shift and the origin of the Vfb roll-off in the metal-gate/high-k pMOS stacks are reviewed. Methods that can alleviate the Vfb shift phenomenon are summarized and the future research trend is described.
基金Project supported by the Chinese National Science and Technology Major Project(No.2009ZX02035)the Special Funds for Major State Basic Research Projects,China(No.2006CB302704)the Opening Project of Key Laboratory of Microelectronics Devices of Integrated Technology(IMECAS)
文摘Planarization used in a gate-last CMOS device was successfully developed by particular technologies of SOG two-step plasma etch-back plus one special etch-back step for SOG/SiO_2 interface trimming.The within-the-wafer ILD thickness non-uniformity can reach 4.19%with a wafer edge exclusion of 5 mm.SEM results indicated that there was little"dish effect"on the 0.4μm gate-stack structure and finally achieved a good planarization profile on the whole substrate.The technology provided a CMP-less process basis for sub-100 nm high-k/metal gate-last CMOS integration.
基金Project supported by the National High Technology Research and Development Program(863 Program)of China(No.SS2015AA010601)the National Natural Science Foundation of China(Nos.61176091+1 种基金61306129)the Opening Project of the Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences
文摘The time zero dielectric breakdown characteristics of MOSCAP with ultra-thin EOT high-k metal gate stacks are studied. The TZDB results show an abnormal area dependence due to the series resistance effect. The series resistance components extracted from the Fowler-Nordheim tunneling relation are attributed to the spreading resistance due to the asymmetry electrodes. Based on a series model to eliminate the series resistance effect, an area acceleration dependence is obtained by correcting the TZDB results. The area dependence follows Poisson area scaling rules, which indicates that the mechanism of TZDB is the same as TDDB and could be considered as a trap generation process.