This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs r...This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs revealed that all the membranes exhibited nanofibrous morphology.The prepared membranes were characterized by Fourier transform infrared spectroscopy(FTIR).The prepared membranes were used as an adsorbent for hazardous heavy metal ions Pb^(2+) and Cr_(2)O^(2-)_(7).The adsorption capacity and the removal efficiency of the membranes were examined as function of the initial adsorbate concentration and pH of the medium.Coated membranes with PANI showed better adsorption performance and their direct current(DC)conductivities were correlated to heavy metal ion concentrations.Adsorption isotherms were also performed,and the adsorption process was tested according to the Langmuir and Freundlich models.The regeneration and reuse of the prepared membranes to re-adsorb heavy metal ions were also investigated.The enhancement in adsorption performance and reusability of PANI-coated membranes in comparison with non-coated ones is fully discussed.The results show that the maximum adsorption capacities of lead and chromate ions on the PANI-coated membranes are 290.12 and 1202.53 mg/g,respectively.展开更多
Recovery of alginate extracted from aerobic granular sludge(AGS)has given rise to a novel research direction.However,these extracted alginate solutions have a water content of nearly 100%.Alternately,ultrafiltration(U...Recovery of alginate extracted from aerobic granular sludge(AGS)has given rise to a novel research direction.However,these extracted alginate solutions have a water content of nearly 100%.Alternately,ultrafiltration(UF)is generally used for concentration of polymers.Furthermore,the introduction of multivalent metal ions into alginate may provide a promising method for the development of novel nanomaterials.In this study,membrane fouling mitigation by multivalent metal ions,both individually and in combination,and properties of recycled materials were investigated for UF recovery of sodium alginate(SA).The filtration resistance showed a significantly negative correlation with the concentration of metal ions,arranged in the order of Mg^2+<Ca^2+<Fe^3+<Al^3+(filtration resistance mitigation),and the moisture content of recycled filter cake showed a marked decrease.For Ca^2+,Mg^2+,Fe^3+,and Ca^2++Fe^3+,the filtration resistances were almost the same when the total charge concentration was less than 5 mmol·L^–1.However,when the total charge concentration was greater than 5 mmol·L^–1,membrane fouling mitigation increased significantly in the presence of Ca^2+or Fe^3+and remained constant for Mg^2+with the increase of total charge concentration.The filtration resistance mitigation was arranged in the order of Fe^3+>Fe^3++Ca^2+>Ca^2+>Mg^2+.Three mechanisms were proposed in the presence of Fe^3+,such as the decrease of SA concentration,change in p H,and production of hydroxide iron colloids from hydrolysis.The properties of recycled materials(filter cake)were investigated via optical microscope observation,dynamic light scattering,Fourier transform infrared,X-ray photoelectron spectroscopy(XPS),and scanning electron microscopy.The results provide further insight into UF recoveries of alginate extracted from AGS.展开更多
A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liqu...A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...展开更多
The mass transfer of thiophene through pervaporation(PV) membranes could be facilitated by certain transitional metal ions like Ag+, Mn2+, and Cr3+ thanks to their p complexation with thiophene. In this study, Ag+, ...The mass transfer of thiophene through pervaporation(PV) membranes could be facilitated by certain transitional metal ions like Ag+, Mn2+, and Cr3+ thanks to their p complexation with thiophene. In this study, Ag+, Mn2+, and Cr3+ ions were loaded onto the polyether block amide(PEBAX)/PAN composite membranes and were tested on the performance for separation of thiophene/n-heptane mixture. Pervaporation test results showed that the pervaporative separation index increased significantly to 73.1%, 75.5%, and 97.2% at 30 oC for the Ag+-, Mn2+-, Cr3+-loaded PEBAX membranes, respectively,as compared to the pristine PEBAX/PAN composite membrane.展开更多
The transport of metal ions of indium, gallium and thallium from source solution to receiving phase through the chromatographic fiber supported solid membrane in the acetylacetone (HAA) containing mixed solvent syst...The transport of metal ions of indium, gallium and thallium from source solution to receiving phase through the chromatographic fiber supported solid membrane in the acetylacetone (HAA) containing mixed solvent system has been explored. The fibers supported solid membranes were prepared with chemical synthesis from cellulose fibers and citric acid with the carboxylic acid ion exchange groups introduced. The experimental variables, such as concentration of metal ions (10^-2 to 10^-4 mol.L^-1) in the source solution, mixed solvent composition [for exampl, e, acetylacetone, (2,4-pentanedione), (HAA) 20% (by volume), 1,4-dioxane 10% to 60% and HC1 0.25 to 2 mol.L^-1] in the receiving phase and stirring speed (50-130 r.min ) of the bulk source and receiving phase, were explored. The efficiency of mixed solvents for the transport of metal ions from the source to receiving phase through the fiber supported solid membrane was evaluated. The combined ion exchange solvent extraction (CIESE) was observed effective for the selective transport of thallium, indium and gallium metal ions through fiber supported solid membrane in mixed solvents. The oxonium salt formation in the receiving phase enhances thallium, indium and gallium metal ion transport through solid membrane phase. The selective transport of thallium metal ions from source phase was observed from indium and gallium metal ions in the presence of hydrochloric acid in organic solvents in receiving phase. The separation of thallium metal ions from the binary mixtures of Be(II), Ti(IV), AI(III) Ca(II), Mg(II), K (I), La(III) and Y(III) was carried out in the mixed solvent system using cellulose fiber supported solid membrane.展开更多
In natural systems heavy metals are present in very low concentrations (less than micro-molar), so precise measurement of the free metal ions is difficult. Recently, a new method has been developed called the Donnan m...In natural systems heavy metals are present in very low concentrations (less than micro-molar), so precise measurement of the free metal ions is difficult. Recently, a new method has been developed called the Donnan membrane technique (DMT). Several heavy metals could be measured simultaneously using this method. Furthermore, all the metals did not interfere with each other, and the balance between the measured system and the surrounding condition could not be disturbed. Improvements were made according to the internal condition. The free heavy metal ion concentrations were measured in different systems using the improved method, and satisfied results have been obtained.展开更多
Metallic ion-cross-linked polymer of intrinsic microporosity(PIM-1) thin-film composite(TFC) membranes supported on an ultraviolet(UV)-cross-linked porous substrate were fabricated. The UV-cross-linked porous substrat...Metallic ion-cross-linked polymer of intrinsic microporosity(PIM-1) thin-film composite(TFC) membranes supported on an ultraviolet(UV)-cross-linked porous substrate were fabricated. The UV-cross-linked porous substrate was prepared via polymerization-induced phase separation. The PIM-1 TFC membranes were fabricated via a dip-coating procedure. Metallic ion-cross-linked PIM-1 TFC membranes were fabricated by hydrolyzing the PIM-1 TFC membrane in an alkali solution and then cross-linking it in a multivalent metallic ion solution. The pore size and porous structures were evaluated by low-temperature N_2 adsorption–desorption analysis. The membrane structure was investigated by field-emission scanning electron microscopy. The effects of heat treatment and pore-forming additives on the gas permeance of the UV-cross-linked porous substrate are reported. The effects of different pre-coating treatments on the gas permeance of the metallic ion-cross-linked PIM-1 TFC membrane are also discussed. The metallic ion-crosslinked PIM-1 TFC membrane displayed high CO_2/N_2 selectivity(23) and good CO_2 permeance(1058 GPU).展开更多
Metal–organic frameworks(MOFs)with angstrom-sized pores are promising functional nanomaterials for the fabrication of cation permselective membranes(MOF-CPMs).However,only a few research reports show successful prepa...Metal–organic frameworks(MOFs)with angstrom-sized pores are promising functional nanomaterials for the fabrication of cation permselective membranes(MOF-CPMs).However,only a few research reports show successful preparation of the MOF-CPMs with good cation separation performance due to several inherent problems in MOFs,such as arduous selfassembly,poor water resistance,and tedious fabrication strategies.Besides,low cation permeation flux due to the absence of the cation permeation assisting functionalities in MOFs is another big issue,which limits their widespread use in membrane technology.Therefore,it is necessary to fabricate functional MOF-CPMs using simplistic strategies to improve cation permeation.In this context,we report a facile in situ smart growth strategy to successfully produce ultrathin(<600 nm)and leaflike UiO-66-SO3H membranes at the surface of anodic alumina oxide.The physicochemical characterizations confirm that sulfonated angstrom-sized ion transport channels exist in the as-prepared UiO-66-SO3H membranes,which accelerate the cation permeation(~3×faster than non-functionalized UiO-66 membrane)and achieve a high ion selectivity(Na^+/Mg^2+>140).The outstanding cation separation performance validates the importance of introducing sulfonic acid groups in MOF-CPMs.展开更多
There is an urgent need to break through the trade-off between proton conductivity and ion selectivity of proton exchange membrane(PEM)in vanadium flow battery(VFB).Proton channels in PEM are the key to controlling th...There is an urgent need to break through the trade-off between proton conductivity and ion selectivity of proton exchange membrane(PEM)in vanadium flow battery(VFB).Proton channels in PEM are the key to controlling the ion sieving and proton conductivity in VFB.Herein,two types of proton channels are reconstructed in the hybrid membrane via introducing modified Zr-MOFs(IM-UIO-66-AS)into SPEEK matrix.Internal proton channels in IM-UIO-66-AS and interfacial proton channels between grafted imidazole groups on Zr-MOFs and SPEEK greatly improve the conductivity of the IM-UIO-66-AS/SPEEK hybrid membrane.More importantly,both reconstructed proton channels block the vanadium-ion permeation to realize enhanced ion selectivity according to the size sieving and Donnan exclusion effects,respectively.Moreover,the hybrid membrane exhibits good mechanical property and dimensional stability.Benefiting from such rational design,a VFB loading with the optimized membrane exhibits enhanced voltage efficiency of 79.9%and outstanding energy efficiency of 79.6%at 200 m A cm^(-2),and keeps a notable cycle stability for 300 cycles in the long-term cycling test.Therefore,this study provides inspiration for preparing next-generation PEMs with high ion selectivity and proton conductivity for VFB application.展开更多
The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equi...The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd^2+, Cu^2+, Pb^2+, and Zn^2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd^2+ (3%-52%) and Zn^2+ (11%-72%) in soil solutions were generally higher than those of Cu^2+ (0.2%-30%) and Pb^2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (Kp) and dissolved organic carbon did not show any significant influence on Kp.展开更多
Metal-organic nanosheets(MONs)as a novel material with tunable pore structures and low mass transfer resistance,have emerged as molecular sieves for the separation of gases and liquids.In theory,they can also serve as...Metal-organic nanosheets(MONs)as a novel material with tunable pore structures and low mass transfer resistance,have emerged as molecular sieves for the separation of gases and liquids.In theory,they can also serve as ion sieves for lithium metal batteries(LMBs),realizing the high-energy and dendritic free LMBs.However,there are rarely relevant reports,because it is difficult to simultaneously balance efficient ion sieving ability,high ion passing rate and high electrochemical stability.Here,we synthesized a stable ultrathin MON[Zn_(2)(Bim)_(4)]([Zn_(2)(Bim)_(4)]Nanosheet,HBim=benzimidazolate),which can achieve both efficient lithium ion sieving ability,high lithium ion passing rate and high electrochemical stability at the same time.The separator assembled by this MON exhibits high Li^(+)transfer number of 0.81 due to the accurate lithium ion and anion/solvent separation.The battery containing such separator shows high lithium ionic conductivity of 0.74 m S cm^(-1)and low activation energy of 0.099 eV,which can be attributed to the nanometer level thickness and the ion sieving effect.What is more,we realized the application of MONs-based ion sieves in LMBs with intercalation cathodes for the first time.And the LiFePO_(4)|Li battery with as-assembled separator demonstrates improved Coulombic efficiency(>99%)and significantly extended cycling life(>1600 cycles)with 80%capacity retention.展开更多
Functional nanofibrous membranes fabricated by electrospinning technology have attracted much attention in the removal of heavy metal ions from contaminated wastewater.The high specific surface area,high porosity and ...Functional nanofibrous membranes fabricated by electrospinning technology have attracted much attention in the removal of heavy metal ions from contaminated wastewater.The high specific surface area,high porosity and ease of functionality create an enhanced throughput and high adsorption capacity of the nanofibrous membrane.However,the relatively poor mechanical properties of the membrane with a non-woven nanofibrous structure are one of the major concerns,which can limit the applications in wastewater treatment.Different strategies and methodologies were explored to address the problems and were reviewed in this work,highlighting the possibilities of overcoming the poor mechanical properties of the nanofibrous membrane and to ensure the recyclability and reusability of the membrane during the adsorption process.展开更多
文摘This paper describes the preparation of a membrane of polyacrylonitrile(PAN)and its corresponding membrane coated with polyaniline(PANI)for the adsorption of heavy metal ions.Scanning electron microscopy micrographs revealed that all the membranes exhibited nanofibrous morphology.The prepared membranes were characterized by Fourier transform infrared spectroscopy(FTIR).The prepared membranes were used as an adsorbent for hazardous heavy metal ions Pb^(2+) and Cr_(2)O^(2-)_(7).The adsorption capacity and the removal efficiency of the membranes were examined as function of the initial adsorbate concentration and pH of the medium.Coated membranes with PANI showed better adsorption performance and their direct current(DC)conductivities were correlated to heavy metal ion concentrations.Adsorption isotherms were also performed,and the adsorption process was tested according to the Langmuir and Freundlich models.The regeneration and reuse of the prepared membranes to re-adsorb heavy metal ions were also investigated.The enhancement in adsorption performance and reusability of PANI-coated membranes in comparison with non-coated ones is fully discussed.The results show that the maximum adsorption capacities of lead and chromate ions on the PANI-coated membranes are 290.12 and 1202.53 mg/g,respectively.
基金partially supported by the Beijing Outstanding Talents TrainingScience and Technology Programs of the Beijing Municipal Education Commission(SQKM201710016001)+1 种基金the BUCEA Post Graduate Innovation Projectthe Beijing Advanced Innovation Center for Future Urban Design。
文摘Recovery of alginate extracted from aerobic granular sludge(AGS)has given rise to a novel research direction.However,these extracted alginate solutions have a water content of nearly 100%.Alternately,ultrafiltration(UF)is generally used for concentration of polymers.Furthermore,the introduction of multivalent metal ions into alginate may provide a promising method for the development of novel nanomaterials.In this study,membrane fouling mitigation by multivalent metal ions,both individually and in combination,and properties of recycled materials were investigated for UF recovery of sodium alginate(SA).The filtration resistance showed a significantly negative correlation with the concentration of metal ions,arranged in the order of Mg^2+<Ca^2+<Fe^3+<Al^3+(filtration resistance mitigation),and the moisture content of recycled filter cake showed a marked decrease.For Ca^2+,Mg^2+,Fe^3+,and Ca^2++Fe^3+,the filtration resistances were almost the same when the total charge concentration was less than 5 mmol·L^–1.However,when the total charge concentration was greater than 5 mmol·L^–1,membrane fouling mitigation increased significantly in the presence of Ca^2+or Fe^3+and remained constant for Mg^2+with the increase of total charge concentration.The filtration resistance mitigation was arranged in the order of Fe^3+>Fe^3++Ca^2+>Ca^2+>Mg^2+.Three mechanisms were proposed in the presence of Fe^3+,such as the decrease of SA concentration,change in p H,and production of hydroxide iron colloids from hydrolysis.The properties of recycled materials(filter cake)were investigated via optical microscope observation,dynamic light scattering,Fourier transform infrared,X-ray photoelectron spectroscopy(XPS),and scanning electron microscopy.The results provide further insight into UF recoveries of alginate extracted from AGS.
基金supported by Department of Science and Technology,Government of India (GAP 271526)
文摘A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...
基金The financial support from the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2013Z009)the Guangxi Natural Science Fund (2014jjAA20079)the Guangdong Province of Quality and Technical Supervision Bureau (2018ZZ01) is greatly appreciated
文摘The mass transfer of thiophene through pervaporation(PV) membranes could be facilitated by certain transitional metal ions like Ag+, Mn2+, and Cr3+ thanks to their p complexation with thiophene. In this study, Ag+, Mn2+, and Cr3+ ions were loaded onto the polyether block amide(PEBAX)/PAN composite membranes and were tested on the performance for separation of thiophene/n-heptane mixture. Pervaporation test results showed that the pervaporative separation index increased significantly to 73.1%, 75.5%, and 97.2% at 30 oC for the Ag+-, Mn2+-, Cr3+-loaded PEBAX membranes, respectively,as compared to the pristine PEBAX/PAN composite membrane.
文摘The transport of metal ions of indium, gallium and thallium from source solution to receiving phase through the chromatographic fiber supported solid membrane in the acetylacetone (HAA) containing mixed solvent system has been explored. The fibers supported solid membranes were prepared with chemical synthesis from cellulose fibers and citric acid with the carboxylic acid ion exchange groups introduced. The experimental variables, such as concentration of metal ions (10^-2 to 10^-4 mol.L^-1) in the source solution, mixed solvent composition [for exampl, e, acetylacetone, (2,4-pentanedione), (HAA) 20% (by volume), 1,4-dioxane 10% to 60% and HC1 0.25 to 2 mol.L^-1] in the receiving phase and stirring speed (50-130 r.min ) of the bulk source and receiving phase, were explored. The efficiency of mixed solvents for the transport of metal ions from the source to receiving phase through the fiber supported solid membrane was evaluated. The combined ion exchange solvent extraction (CIESE) was observed effective for the selective transport of thallium, indium and gallium metal ions through fiber supported solid membrane in mixed solvents. The oxonium salt formation in the receiving phase enhances thallium, indium and gallium metal ion transport through solid membrane phase. The selective transport of thallium metal ions from source phase was observed from indium and gallium metal ions in the presence of hydrochloric acid in organic solvents in receiving phase. The separation of thallium metal ions from the binary mixtures of Be(II), Ti(IV), AI(III) Ca(II), Mg(II), K (I), La(III) and Y(III) was carried out in the mixed solvent system using cellulose fiber supported solid membrane.
文摘In natural systems heavy metals are present in very low concentrations (less than micro-molar), so precise measurement of the free metal ions is difficult. Recently, a new method has been developed called the Donnan membrane technique (DMT). Several heavy metals could be measured simultaneously using this method. Furthermore, all the metals did not interfere with each other, and the balance between the measured system and the surrounding condition could not be disturbed. Improvements were made according to the internal condition. The free heavy metal ion concentrations were measured in different systems using the improved method, and satisfied results have been obtained.
基金Supported by the National Natural Science Foundation of China(21506160,21776217)the Science and Technology Plans of Tianjin(16PTSYJC00110)
文摘Metallic ion-cross-linked polymer of intrinsic microporosity(PIM-1) thin-film composite(TFC) membranes supported on an ultraviolet(UV)-cross-linked porous substrate were fabricated. The UV-cross-linked porous substrate was prepared via polymerization-induced phase separation. The PIM-1 TFC membranes were fabricated via a dip-coating procedure. Metallic ion-cross-linked PIM-1 TFC membranes were fabricated by hydrolyzing the PIM-1 TFC membrane in an alkali solution and then cross-linking it in a multivalent metallic ion solution. The pore size and porous structures were evaluated by low-temperature N_2 adsorption–desorption analysis. The membrane structure was investigated by field-emission scanning electron microscopy. The effects of heat treatment and pore-forming additives on the gas permeance of the UV-cross-linked porous substrate are reported. The effects of different pre-coating treatments on the gas permeance of the metallic ion-cross-linked PIM-1 TFC membrane are also discussed. The metallic ion-crosslinked PIM-1 TFC membrane displayed high CO_2/N_2 selectivity(23) and good CO_2 permeance(1058 GPU).
基金funding supported by the National Natural Science Foundation of China(Nos.21490581,91534203,21878282,and 21606215)
文摘Metal–organic frameworks(MOFs)with angstrom-sized pores are promising functional nanomaterials for the fabrication of cation permselective membranes(MOF-CPMs).However,only a few research reports show successful preparation of the MOF-CPMs with good cation separation performance due to several inherent problems in MOFs,such as arduous selfassembly,poor water resistance,and tedious fabrication strategies.Besides,low cation permeation flux due to the absence of the cation permeation assisting functionalities in MOFs is another big issue,which limits their widespread use in membrane technology.Therefore,it is necessary to fabricate functional MOF-CPMs using simplistic strategies to improve cation permeation.In this context,we report a facile in situ smart growth strategy to successfully produce ultrathin(<600 nm)and leaflike UiO-66-SO3H membranes at the surface of anodic alumina oxide.The physicochemical characterizations confirm that sulfonated angstrom-sized ion transport channels exist in the as-prepared UiO-66-SO3H membranes,which accelerate the cation permeation(~3×faster than non-functionalized UiO-66 membrane)and achieve a high ion selectivity(Na^+/Mg^2+>140).The outstanding cation separation performance validates the importance of introducing sulfonic acid groups in MOF-CPMs.
基金supported by the National Natural Science Foundation of China(Grant No.21975267)the Central Guidance on Local Science and Technology Development Fund of Liaoning Province(No:2022JH6/100100001)。
文摘There is an urgent need to break through the trade-off between proton conductivity and ion selectivity of proton exchange membrane(PEM)in vanadium flow battery(VFB).Proton channels in PEM are the key to controlling the ion sieving and proton conductivity in VFB.Herein,two types of proton channels are reconstructed in the hybrid membrane via introducing modified Zr-MOFs(IM-UIO-66-AS)into SPEEK matrix.Internal proton channels in IM-UIO-66-AS and interfacial proton channels between grafted imidazole groups on Zr-MOFs and SPEEK greatly improve the conductivity of the IM-UIO-66-AS/SPEEK hybrid membrane.More importantly,both reconstructed proton channels block the vanadium-ion permeation to realize enhanced ion selectivity according to the size sieving and Donnan exclusion effects,respectively.Moreover,the hybrid membrane exhibits good mechanical property and dimensional stability.Benefiting from such rational design,a VFB loading with the optimized membrane exhibits enhanced voltage efficiency of 79.9%and outstanding energy efficiency of 79.6%at 200 m A cm^(-2),and keeps a notable cycle stability for 300 cycles in the long-term cycling test.Therefore,this study provides inspiration for preparing next-generation PEMs with high ion selectivity and proton conductivity for VFB application.
文摘The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd^2+, Cu^2+, Pb^2+, and Zn^2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd^2+ (3%-52%) and Zn^2+ (11%-72%) in soil solutions were generally higher than those of Cu^2+ (0.2%-30%) and Pb^2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (Kp) and dissolved organic carbon did not show any significant influence on Kp.
基金the financial support of the Natural Science Foundation of Shanxi Province(20210302124055)the National Natural Science Foundation of China(22301170,22271211 and 91961201)1331 Project of Shanxi Province。
文摘Metal-organic nanosheets(MONs)as a novel material with tunable pore structures and low mass transfer resistance,have emerged as molecular sieves for the separation of gases and liquids.In theory,they can also serve as ion sieves for lithium metal batteries(LMBs),realizing the high-energy and dendritic free LMBs.However,there are rarely relevant reports,because it is difficult to simultaneously balance efficient ion sieving ability,high ion passing rate and high electrochemical stability.Here,we synthesized a stable ultrathin MON[Zn_(2)(Bim)_(4)]([Zn_(2)(Bim)_(4)]Nanosheet,HBim=benzimidazolate),which can achieve both efficient lithium ion sieving ability,high lithium ion passing rate and high electrochemical stability at the same time.The separator assembled by this MON exhibits high Li^(+)transfer number of 0.81 due to the accurate lithium ion and anion/solvent separation.The battery containing such separator shows high lithium ionic conductivity of 0.74 m S cm^(-1)and low activation energy of 0.099 eV,which can be attributed to the nanometer level thickness and the ion sieving effect.What is more,we realized the application of MONs-based ion sieves in LMBs with intercalation cathodes for the first time.And the LiFePO_(4)|Li battery with as-assembled separator demonstrates improved Coulombic efficiency(>99%)and significantly extended cycling life(>1600 cycles)with 80%capacity retention.
基金This work was supported by the National Natural Science Foundation of China(No.51673011)the Project of the State Key Laboratory of Organic-Inorganic Composites at Beijing University of Chemical Technology,China(No.oic-202001002).
文摘Functional nanofibrous membranes fabricated by electrospinning technology have attracted much attention in the removal of heavy metal ions from contaminated wastewater.The high specific surface area,high porosity and ease of functionality create an enhanced throughput and high adsorption capacity of the nanofibrous membrane.However,the relatively poor mechanical properties of the membrane with a non-woven nanofibrous structure are one of the major concerns,which can limit the applications in wastewater treatment.Different strategies and methodologies were explored to address the problems and were reviewed in this work,highlighting the possibilities of overcoming the poor mechanical properties of the nanofibrous membrane and to ensure the recyclability and reusability of the membrane during the adsorption process.