Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface...Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate.展开更多
The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding spe...The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding speed (230-1480 r/min). The wear mechanisms of an MMC and the corresponding matrix material under similar experimental conditions were compared on a pin-on-disc wear machine. The pins were made of 6061 aluminum matrix alloy and 6061 aluminum matrix composite reinforced with 10% Al2O3 (volume fraciton) particles (6-18μm). The disc was made of steel. The major findings are as follows: the MMC shows much higher wear resistance than the corresponding matrix material; unlike that of matrix material, the wear of MMC is very much linear and possible to predict easily; the wear mechanism is similar for both materials other than the three-body abrasion in the case of MMC; the reinforced particles resist the abrasion and restrict the deformation of MMCs which causes high resistance to wear. These results reveal the roles of the reinforcement particles on the wear resistance of MMCs and provide a useful guide for a better control of their wear.展开更多
The corrosion resistance of 2024 Al and SiC particle reinforced 2024 Al metal matrix composite (SiCp?024AI MMC) in 3.5% NaCl solution was investigated with electrochemical method and immersion test, and the corrosion ...The corrosion resistance of 2024 Al and SiC particle reinforced 2024 Al metal matrix composite (SiCp?024AI MMC) in 3.5% NaCl solution was investigated with electrochemical method and immersion test, and the corrosion protection of sulfuric acid anodized coatings on both materials was evaluated by electrochemical impedance spectroscopy. The results showed that the SiCp?024AI MMC is more susceptible to corrosion than its matrix alloy in 3.5% NaCI. For 2024AI, the anodized coating provides excellent corrosion resistance to 3.5% NaCI. The anodized coating on the SiCp?024AI provides satisfactory corrosion protection, but it is not as effective as that for 2024AI because the structure of the anodized layer is affected by the SiC particulates.展开更多
Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a...Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.展开更多
For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To ...For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To this end,a computational approach consists of the direct methods,homogenization,and statistical analyses is introduced in our previous studies.Since failure of PRMMC materials are often caused by time-varied combinations of tensile and shear stresses,the established approach is extended in the present work to take into account of these situations.In this paper,ultimate strengths and endurance limits of an exemplary PRMMC material,WC-Co,are predicted under three independently varied tensile and shear stresses.In order to cover the entire load space with least amount of weight factors,a new method for generating optimally distributed weight factors in an n dimensional space is formulated.Employing weight factors determined by this algorithm,direct method calculations were performed on many statistically equivalent representative volume elements(SERVE)samples.Through analyzing statistical characteristics associated with results the study suggests a simplified approach to estimate the material strength under superposed stresses without solving the difficult high dimensional shakedown problem.展开更多
The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increa...The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.展开更多
Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by...Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.展开更多
Selective laser melting(SLM) is currently the subject of major research studies with the objective to directly manufacture high performance metal alloys and metal matrix composite(MMC) parts by consolidating metal and...Selective laser melting(SLM) is currently the subject of major research studies with the objective to directly manufacture high performance metal alloys and metal matrix composite(MMC) parts by consolidating metal and its composite powders.The successful fabrication of the parts by SLM is related with proper selection of materials and processing parameters to provide sufficient densification and consolidation of the powder materials and generate suitable microstructures and mechanical properties.It is also important to minimize or eliminate typical issues such as porosity,balling effect,and thermal stress associated with the powder melting and consolidation at high temperature conditions during SLM process.This paper presents the fundamental material and process aspects,address the technical issues,and review the recent research development in the SLM of metal and MMCs.展开更多
Ceramic-reinforced metal matrix composites(MMCs)display beneficial properties owing to their combination of ceramic and metal phases.However,the properties are highly dependent on the reinforcing phase composition,vol...Ceramic-reinforced metal matrix composites(MMCs)display beneficial properties owing to their combination of ceramic and metal phases.However,the properties are highly dependent on the reinforcing phase composition,volume fraction and morphology.Continuous fiber or network reinforcement morphologies are difficult and expensive to manufacture,and the often-used discontinuous particle or whisker reinforcement morphologies result in less effective properties.Here,we demonstrate the formation of a co-continuous ceramic-reinforced metal matrix composite using solid-state processing.Binder jet additive manufacturing(BJAM)was used to print a nickel superalloy part followed by post-processing via reactive sintering to form a continuous carbide reinforcing phase at the particle boundaries.The kinetics of reinforcement formation are investigated in order to develop a relationship between reactive sintering time,temperature and powder composition on the reinforcing phase thickness and volume fraction.To evaluate performance,the wear resistance of the reinforced BJAM alloy 625 MMC was compared to unreinforced BJAM alloy 625,demonstrating a 64%decrease in the specific wear rate under abrasive wear conditions.展开更多
The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverabl...The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverable losses of platinum products and alloys when operating under high temperature conditions, particularly for glassblowing and single crystal growing crucibles. A two-layered composite material based on platinum-group metals and corundum plasma ceramics is thoroughly investigated. A successful experience of crucibles exploitation, designed for production of high temperature optical glasses from the composite and results of the research on composite material specimens are described.展开更多
The hollow sphere fly ash/6061Al composite with about 43% porosity in volume fraction (produced by the addition of hollow sphere fly ash particles) was fabricated by squeeze casting technique. Using the same technique...The hollow sphere fly ash/6061Al composite with about 43% porosity in volume fraction (produced by the addition of hollow sphere fly ash particles) was fabricated by squeeze casting technique. Using the same technique, the fly ash/7075Al composite with all the porosity in hollow sphere fly ash infiltrated by molten aluminum was fabricated for partially studying the effect of porosity on the damping behavior of the fly ash/Al composites. The resonant damping capacity of the 'porous' fly ash/6061Al composite reached (20.2-26.9)×10-3 and was about 8 times of the value tested by forced vibration method (in the frequency range 0.2-2 Hz). However, the damping capacity of the as-received 6061Al and the 'dense' fly ash/7075Al composite were consistent by the two testing methods and were in the range of (1.1-7.7)×10-3. The effect of temperature on the damping behavior of the materials was also studied. The related damping mechanisms have also been discussed in light of data from the characterization of microstructure and damping capacity. Due to the inferior mechanical properties of the fly ash particles, the tensile strength of the FA/Al composites was lower than that of the corresponding aluminum alloy matrix and was 70.1 MPa and 180.6 MPa for the 'porous' fly ash/6061Al and 'dense' fly ash/7075Al composite, respectively.展开更多
To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy me...To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy method and hot extrusion. The damping properties of BaTiO3 ceramic, Al matrix and BaTiO3/Al composites were examined by dynamic mechanical analysis in the temperature range from 273 K to 573 K. The results show that although BaTiO3 exhibits high damping (tan δ=0.12) below 400 K, the damping capacity of 10%BaTiO3/Al (mass fraction) composites below 400 K is not increased as compared to the Al matrix. On the other hand, the damping capacity above 450 K is greatly enhanced due to the motion of dislocations at the interfaces between ceramic particles and Al matrix. The failure of exerting the intrinsic damping of BaTiO3 particles in the composites is attributed to the poor interface bonding between the particles and the matrix. The tensile strength of the composite is 42% higher than that of the Al matrix, which indicates the possibility of obtaining high strength and high damping composites via interface improvement and the addition of high volume fraction of large grain BaTiO3 particles.展开更多
The effects of Ti content and the alloying elements of Si and Cu on the microstructures of casting in situ Al3Ti-Al composites were investigated. Simultaneously, their corrosion properties were also discussed. The res...The effects of Ti content and the alloying elements of Si and Cu on the microstructures of casting in situ Al3Ti-Al composites were investigated. Simultaneously, their corrosion properties were also discussed. The results indicate that the aspect ratios of Al3Ti platelets in different Al based composites are different although all of them are in flaky shape. The morphologies of Al3Ti phase are not only determined by Ti content, but are also related to the alloying elements. The grain refining role of Al3Ti phase in the pure Al and Al-Cu based composites is more effective than that in the Al-Si based composite. The addition of Ti decreases the corrosion resistance of pure Al and Al alloys. The corrosion resistances of the composites are dependent on both the corrosion characteristics of the corresponding matrixes and the distribution of Al3Ti platelets.展开更多
The SiCp/Al-alloy composite front brake rotors designed for Shanghai Santana cars were prepared by semi-solid stirring+liquid forging process. The composite brake rotors were subjected to dynamometer tests on a SCHENC...The SiCp/Al-alloy composite front brake rotors designed for Shanghai Santana cars were prepared by semi-solid stirring+liquid forging process. The composite brake rotors were subjected to dynamometer tests on a SCHENCK brake testing system, referring to TL110 standard of VOLKSWAGEN Co. The friction coefficient and thermal response during fade testing and the wear performance of the composite rotors were studied as the functions of various parameters such as braking pressures, initial speeds, initial temperatures, torque and decelerations, and were compared with those of conventional cast iron rotors. The results show that the properties of the composite rotors can achieve the requirements of commercial cast iron rotors. The results also show that the friction coefficients of the composite rotors under different braking conditions are within the deviation band specified by the TL110 standard, and the temperature rise of composite rotors is lower than that of cast iron rotors at the end of each fade stop. The wear resistance of composite rotors is higher than that of cast iron rotors. The friction mechanism and wear mechanism were analyzed.展开更多
This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analy...This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analyze wetting characteristics, the cross sections of composites are examined by scanning electron microscopy(SEM). The bending tests and microhardness tests are performed to evaluate mechanical properties of composites. The results show that the composites produced by liquid metal infiltration give better properties than those produced by rheocasting or powder metallurgy process, primarily due to the decrease of porosity and reinforcement cluster. For liquid metal infiltration composites, a good adhesion between the fiber and matrix is found. Three points bending test results show that there is an increase in flexural modulus with reinforcement contents. In addition, a series of microhardness tests are conducted to determine the effect of heat treatment on the mechanical property of Al 2O 3/Al composites.展开更多
文摘Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate.
文摘The effect of reinforcement on the wear mechanism of metal matrix composites (MMCs) was investigated by considering different parameters, such as sliding distance (6 km), pressure (0.14-1.1 MPa) and sliding speed (230-1480 r/min). The wear mechanisms of an MMC and the corresponding matrix material under similar experimental conditions were compared on a pin-on-disc wear machine. The pins were made of 6061 aluminum matrix alloy and 6061 aluminum matrix composite reinforced with 10% Al2O3 (volume fraciton) particles (6-18μm). The disc was made of steel. The major findings are as follows: the MMC shows much higher wear resistance than the corresponding matrix material; unlike that of matrix material, the wear of MMC is very much linear and possible to predict easily; the wear mechanism is similar for both materials other than the three-body abrasion in the case of MMC; the reinforced particles resist the abrasion and restrict the deformation of MMCs which causes high resistance to wear. These results reveal the roles of the reinforcement particles on the wear resistance of MMCs and provide a useful guide for a better control of their wear.
基金The financial supports from the Research Fund for the Doc-toral Program of Higher Education (grant No.97014517), State Key Laboratory for Metal Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences and the National Natural Sc
文摘The corrosion resistance of 2024 Al and SiC particle reinforced 2024 Al metal matrix composite (SiCp?024AI MMC) in 3.5% NaCl solution was investigated with electrochemical method and immersion test, and the corrosion protection of sulfuric acid anodized coatings on both materials was evaluated by electrochemical impedance spectroscopy. The results showed that the SiCp?024AI MMC is more susceptible to corrosion than its matrix alloy in 3.5% NaCI. For 2024AI, the anodized coating provides excellent corrosion resistance to 3.5% NaCI. The anodized coating on the SiCp?024AI provides satisfactory corrosion protection, but it is not as effective as that for 2024AI because the structure of the anodized layer is affected by the SiC particulates.
基金supported by the Fundamental Research Funds for the Central Universities (FRF-BR-10-007A and FRF-AS-09-001A)the National Natural Science Foundation of China (10872104)
文摘Thermal contact resistance plays a very important role in heat transfer efficiency and thermomechanical coupling response between two materials,and a common method to reduce the thermal contact resistance is to fill a soft interface material between these two materials.A testing system of high temperature thermal contact resistance based on INSTRON 8874 is established in the present paper,which can achieve 600 C at the interface.Based on this system,the thermal contact resistance between superalloy GH600 material and three-dimensional braid C/C composite material is experimentally investigated,under different interface pressures,interface roughnesses and temperatures,respectively.At the same time,the mechanism of reducing the thermal contact resistance with carbon fiber sheet as interface material is experimentally investigated.Results show that the present testing system is feasible in the experimental research of high temperature thermal contact resistance.
基金Supported by the National Natural Science Foundation of China(Grant No.52075033)Fundamental Research Funds for the Central Universities of China(Grant No.2020RC202).
文摘For design and application of particulate reinforced metal matrix composites(PRMMCs),it is essential to predict the material strengths and understand how do they relate to constituents and microstructural features.To this end,a computational approach consists of the direct methods,homogenization,and statistical analyses is introduced in our previous studies.Since failure of PRMMC materials are often caused by time-varied combinations of tensile and shear stresses,the established approach is extended in the present work to take into account of these situations.In this paper,ultimate strengths and endurance limits of an exemplary PRMMC material,WC-Co,are predicted under three independently varied tensile and shear stresses.In order to cover the entire load space with least amount of weight factors,a new method for generating optimally distributed weight factors in an n dimensional space is formulated.Employing weight factors determined by this algorithm,direct method calculations were performed on many statistically equivalent representative volume elements(SERVE)samples.Through analyzing statistical characteristics associated with results the study suggests a simplified approach to estimate the material strength under superposed stresses without solving the difficult high dimensional shakedown problem.
文摘The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.
基金supported by the Basque Government(Eusko Jaurlaritza)(Nos.KK-2022/00080 Minaku,KK-2022/00070 Edison)tthe Spanish Ministry of Science and Innovation(Nos.PID2019-109220RB-I00 Alasurf,PDC2021-121042-I00 EHU-Coax)the Basque Government(Eusko Jaurlaritza)in call IT 1573-22 for the financial support of the research group.
文摘Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.
文摘Selective laser melting(SLM) is currently the subject of major research studies with the objective to directly manufacture high performance metal alloys and metal matrix composite(MMC) parts by consolidating metal and its composite powders.The successful fabrication of the parts by SLM is related with proper selection of materials and processing parameters to provide sufficient densification and consolidation of the powder materials and generate suitable microstructures and mechanical properties.It is also important to minimize or eliminate typical issues such as porosity,balling effect,and thermal stress associated with the powder melting and consolidation at high temperature conditions during SLM process.This paper presents the fundamental material and process aspects,address the technical issues,and review the recent research development in the SLM of metal and MMCs.
基金funding support from the Natural Sciences and Engineering Research Council of Canada(NSERC)the Canada Research Chairs(CRC)Program+1 种基金Huys Industries and the CWB Welding Foundationthe Centre for Advanced Materials Joining and the Multi-Scale Additive Manufacturing Lab at the University of Waterloo。
文摘Ceramic-reinforced metal matrix composites(MMCs)display beneficial properties owing to their combination of ceramic and metal phases.However,the properties are highly dependent on the reinforcing phase composition,volume fraction and morphology.Continuous fiber or network reinforcement morphologies are difficult and expensive to manufacture,and the often-used discontinuous particle or whisker reinforcement morphologies result in less effective properties.Here,we demonstrate the formation of a co-continuous ceramic-reinforced metal matrix composite using solid-state processing.Binder jet additive manufacturing(BJAM)was used to print a nickel superalloy part followed by post-processing via reactive sintering to form a continuous carbide reinforcing phase at the particle boundaries.The kinetics of reinforcement formation are investigated in order to develop a relationship between reactive sintering time,temperature and powder composition on the reinforcing phase thickness and volume fraction.To evaluate performance,the wear resistance of the reinforced BJAM alloy 625 MMC was compared to unreinforced BJAM alloy 625,demonstrating a 64%decrease in the specific wear rate under abrasive wear conditions.
文摘The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverable losses of platinum products and alloys when operating under high temperature conditions, particularly for glassblowing and single crystal growing crucibles. A two-layered composite material based on platinum-group metals and corundum plasma ceramics is thoroughly investigated. A successful experience of crucibles exploitation, designed for production of high temperature optical glasses from the composite and results of the research on composite material specimens are described.
文摘The hollow sphere fly ash/6061Al composite with about 43% porosity in volume fraction (produced by the addition of hollow sphere fly ash particles) was fabricated by squeeze casting technique. Using the same technique, the fly ash/7075Al composite with all the porosity in hollow sphere fly ash infiltrated by molten aluminum was fabricated for partially studying the effect of porosity on the damping behavior of the fly ash/Al composites. The resonant damping capacity of the 'porous' fly ash/6061Al composite reached (20.2-26.9)×10-3 and was about 8 times of the value tested by forced vibration method (in the frequency range 0.2-2 Hz). However, the damping capacity of the as-received 6061Al and the 'dense' fly ash/7075Al composite were consistent by the two testing methods and were in the range of (1.1-7.7)×10-3. The effect of temperature on the damping behavior of the materials was also studied. The related damping mechanisms have also been discussed in light of data from the characterization of microstructure and damping capacity. Due to the inferior mechanical properties of the fly ash particles, the tensile strength of the FA/Al composites was lower than that of the corresponding aluminum alloy matrix and was 70.1 MPa and 180.6 MPa for the 'porous' fly ash/6061Al and 'dense' fly ash/7075Al composite, respectively.
基金Project (51001071) supported by the National Natural Science Foundation of China Projects (2012CB619400, 2012CB619600) supported by the National Basic Research Program of China+1 种基金Project (2010DFA52550) supported by the International S&T Cooperation Program of ChinaProject (20100470031) supported by China Postdoctoral Science Foundation
文摘To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy method and hot extrusion. The damping properties of BaTiO3 ceramic, Al matrix and BaTiO3/Al composites were examined by dynamic mechanical analysis in the temperature range from 273 K to 573 K. The results show that although BaTiO3 exhibits high damping (tan δ=0.12) below 400 K, the damping capacity of 10%BaTiO3/Al (mass fraction) composites below 400 K is not increased as compared to the Al matrix. On the other hand, the damping capacity above 450 K is greatly enhanced due to the motion of dislocations at the interfaces between ceramic particles and Al matrix. The failure of exerting the intrinsic damping of BaTiO3 particles in the composites is attributed to the poor interface bonding between the particles and the matrix. The tensile strength of the composite is 42% higher than that of the Al matrix, which indicates the possibility of obtaining high strength and high damping composites via interface improvement and the addition of high volume fraction of large grain BaTiO3 particles.
基金supported by the Development Program for Outstanding Young Teachers in Lanzhou University of Technologythe Opening Foundation of Gansu Key Laboratory of Advanced Nonferrous Materials
文摘The effects of Ti content and the alloying elements of Si and Cu on the microstructures of casting in situ Al3Ti-Al composites were investigated. Simultaneously, their corrosion properties were also discussed. The results indicate that the aspect ratios of Al3Ti platelets in different Al based composites are different although all of them are in flaky shape. The morphologies of Al3Ti phase are not only determined by Ti content, but are also related to the alloying elements. The grain refining role of Al3Ti phase in the pure Al and Al-Cu based composites is more effective than that in the Al-Si based composite. The addition of Ti decreases the corrosion resistance of pure Al and Al alloys. The corrosion resistances of the composites are dependent on both the corrosion characteristics of the corresponding matrixes and the distribution of Al3Ti platelets.
文摘The SiCp/Al-alloy composite front brake rotors designed for Shanghai Santana cars were prepared by semi-solid stirring+liquid forging process. The composite brake rotors were subjected to dynamometer tests on a SCHENCK brake testing system, referring to TL110 standard of VOLKSWAGEN Co. The friction coefficient and thermal response during fade testing and the wear performance of the composite rotors were studied as the functions of various parameters such as braking pressures, initial speeds, initial temperatures, torque and decelerations, and were compared with those of conventional cast iron rotors. The results show that the properties of the composite rotors can achieve the requirements of commercial cast iron rotors. The results also show that the friction coefficients of the composite rotors under different braking conditions are within the deviation band specified by the TL110 standard, and the temperature rise of composite rotors is lower than that of cast iron rotors at the end of each fade stop. The wear resistance of composite rotors is higher than that of cast iron rotors. The friction mechanism and wear mechanism were analyzed.
文摘This paper relates to the fabrication of aluminium matrix composites with various amounts of Al 2O 3 fiber and SiC whiskers by rheocasting, powder metallurgy process and liquid metal infiltration process. To analyze wetting characteristics, the cross sections of composites are examined by scanning electron microscopy(SEM). The bending tests and microhardness tests are performed to evaluate mechanical properties of composites. The results show that the composites produced by liquid metal infiltration give better properties than those produced by rheocasting or powder metallurgy process, primarily due to the decrease of porosity and reinforcement cluster. For liquid metal infiltration composites, a good adhesion between the fiber and matrix is found. Three points bending test results show that there is an increase in flexural modulus with reinforcement contents. In addition, a series of microhardness tests are conducted to determine the effect of heat treatment on the mechanical property of Al 2O 3/Al composites.