Transition metal oxides are promising candidates for the high-capacity anode material in lithium-ion batteries.The electrochemical performance of transition metal oxides can be improved by constructing suitable compos...Transition metal oxides are promising candidates for the high-capacity anode material in lithium-ion batteries.The electrochemical performance of transition metal oxides can be improved by constructing suitable composite architectures. Herein, we demonstrate a metal–organic framework(MOF)-assisted strategy for the synthesis of a hierarchical hybrid nanostructure composed of Fe_2O_3 nanotubes assembled in Co_3O_4 host. Starting from MOF composite precursors(Fe-based MOF encapsulated in a Cobased host matrix), a complex structure of Co_3O_4 host and engulfed Fe_2O_3 nanotubes was prepared by a simple annealing treatment in air. By virtue of their structural and compositional features, these hierarchical composite particles reveal enhanced lithium storage properties when employed as anodes for lithium-ion batteries.展开更多
Inexpensive and abundant sodium resources make energy storage systems using sodium chemistry promising replacements for typical lithium-ion rechargeable batteries(LIBs).Fortuitously,aqueous sodium-ion rechargeable bat...Inexpensive and abundant sodium resources make energy storage systems using sodium chemistry promising replacements for typical lithium-ion rechargeable batteries(LIBs).Fortuitously,aqueous sodium-ion rechargeable batteries(ASIBs),which operate in aqueous electrolytes,are cheaper,safer,and more ionically conductive than batteries that operate in conventional organic electrolytes;furthermore,they are suitable for grid-scale energy storage applications.As electrode materials for storing Na~+ ions in ASIBs,a variety of multifunctional metal-organic frameworks(MOFs) have demonstrated great potential in terms of having porous 3 D crystal structures,compatibility with aqueous solutions,long cycle lives(≥1000 cycles),and ease of synthesis.The present review describes MOF-derived technologies for the successful application of MOFs to ASIBs and suggests future challenges in this area of research based on the current understanding.展开更多
A novel adsorbent(MTZ-MOFs)was synthesized by a one-step reaction of zinc nitrate hexahydrate and 1-(2-dimethylaminoethyl)-1H-5-mercaptotetrazole to remove mercury from waste water.The results showed that MTZ-MOFs had...A novel adsorbent(MTZ-MOFs)was synthesized by a one-step reaction of zinc nitrate hexahydrate and 1-(2-dimethylaminoethyl)-1H-5-mercaptotetrazole to remove mercury from waste water.The results showed that MTZ-MOFs had excellent selectivity and repeatability for Hg(Ⅱ),the optimum pH was 3.0,the maximum adsorption capacity was 872.8 mg/g,and the process was a spontaneous exothermic reaction.The adsorption behavior was chemisorption,which conformed to the pseudo-second-order kinetic and Freundlich isothermal model.Moreover,the adsorption mechanism showed that the adsorption process mainly depended on ion exchange and chelation,and the synergistic action of S and N atoms played a key role.So,MTZ-MOFs were an efficient adsorbent for mercury ion removal.展开更多
文摘Transition metal oxides are promising candidates for the high-capacity anode material in lithium-ion batteries.The electrochemical performance of transition metal oxides can be improved by constructing suitable composite architectures. Herein, we demonstrate a metal–organic framework(MOF)-assisted strategy for the synthesis of a hierarchical hybrid nanostructure composed of Fe_2O_3 nanotubes assembled in Co_3O_4 host. Starting from MOF composite precursors(Fe-based MOF encapsulated in a Cobased host matrix), a complex structure of Co_3O_4 host and engulfed Fe_2O_3 nanotubes was prepared by a simple annealing treatment in air. By virtue of their structural and compositional features, these hierarchical composite particles reveal enhanced lithium storage properties when employed as anodes for lithium-ion batteries.
基金supported by a National Research Foundation of Korea, South Korea (NRF) grant funded by the Korean government (MSITMinistry of Science and ICT+1 种基金Information and Communications Technologies) (NRF-2019R1F1A1042080)the Hallym University, South Korea Research Fund, 2019 (HRF-201912-013)。
文摘Inexpensive and abundant sodium resources make energy storage systems using sodium chemistry promising replacements for typical lithium-ion rechargeable batteries(LIBs).Fortuitously,aqueous sodium-ion rechargeable batteries(ASIBs),which operate in aqueous electrolytes,are cheaper,safer,and more ionically conductive than batteries that operate in conventional organic electrolytes;furthermore,they are suitable for grid-scale energy storage applications.As electrode materials for storing Na~+ ions in ASIBs,a variety of multifunctional metal-organic frameworks(MOFs) have demonstrated great potential in terms of having porous 3 D crystal structures,compatibility with aqueous solutions,long cycle lives(≥1000 cycles),and ease of synthesis.The present review describes MOF-derived technologies for the successful application of MOFs to ASIBs and suggests future challenges in this area of research based on the current understanding.
基金supported by the Hubei Provincial Department of Education Science and Technology Research Program Young Talent Project,China (No. Q20201102)the National Natural Science Foundation of China (Nos. 51864042, 51804220)
文摘A novel adsorbent(MTZ-MOFs)was synthesized by a one-step reaction of zinc nitrate hexahydrate and 1-(2-dimethylaminoethyl)-1H-5-mercaptotetrazole to remove mercury from waste water.The results showed that MTZ-MOFs had excellent selectivity and repeatability for Hg(Ⅱ),the optimum pH was 3.0,the maximum adsorption capacity was 872.8 mg/g,and the process was a spontaneous exothermic reaction.The adsorption behavior was chemisorption,which conformed to the pseudo-second-order kinetic and Freundlich isothermal model.Moreover,the adsorption mechanism showed that the adsorption process mainly depended on ion exchange and chelation,and the synergistic action of S and N atoms played a key role.So,MTZ-MOFs were an efficient adsorbent for mercury ion removal.