期刊文献+
共找到3,558篇文章
< 1 2 178 >
每页显示 20 50 100
Cobalt-manganese bimetallic organic frameworks catalyzed solvent-free oxidation of benzyl C-H bonds with O_(2) as sole oxidant
1
作者 Ke Cao Yan Zhou +3 位作者 Shanshan Lv Mengmeng Feng Changjin Qian Zheng Chen 《Nano Research》 SCIE EI CSCD 2024年第11期9532-9539,共8页
The selective oxidation of hydrocarbons can be used to produce oxygen-containing functional compounds such as alcohols, aldehydes or ketones and its efficient and green conversion lies in the development of efficient ... The selective oxidation of hydrocarbons can be used to produce oxygen-containing functional compounds such as alcohols, aldehydes or ketones and its efficient and green conversion lies in the development of efficient catalysts that activate C-H bonds and O_(2) simultaneously. In this work, the bimetallic organic framework (CoMnBDC) material with morphology of stacked nanosheets was synthesized using terephthalic acid as ligands to coordinate with Co^(2+) and Mn^(2+) cations under solvothermal conditions. As revealed by spectroscopic characterizations, the electron transfer from Mn to Co in the CoMnBDC resulted in the reduction of the Co average oxidation state and increase of the Mn average oxidation state. The CoMnBDC nanosheets were used as catalyst in catalytic oxidation of ethylbenzene, in which the redox effect promotes the effective electron transfer, the activation of O_(2) and benzyl C-H bond. The 96.2% conversion of ethylbenzene and 98.0% selectivity towards acetophenone could be obtained with oxygen as sole oxidant and solvent-free condition. The excellent catalytic performance is related to the structure of CoMnBDC and is also the best when compared with reported results. Various types of aromatic hydrocarbons containing benzyl C-H bonds can be effectively oxidized by CoMnBDC to produce corresponding ketone products. The density functional theory (DFT) calculation revealed that the redox effect leads to the relative enrichment of electrons on Co in CoMnBDC, which is conducive to the activation of O_(2);Mn with higher oxidation state is beneficial for the adsorption of ethylbenzene and activation of C-H bonds. The CoMnBDC has a lower energy barrier for transition state, making it easier for the ethylbenzene oxidation to produce acetophenone. 展开更多
关键词 metallic organic framework transition metal NANOCATALYSIS oxidation KETONE
原文传递
Interfacial activation of alkaline phosphatase induced by hydrophilic metal—organic frameworks
2
作者 Dongyan Chen Yi Xu +3 位作者 Jie Wei Munetaka Oyama Quansheng Chen Xiaomei Chen 《Nano Research》 SCIE EI CSCD 2024年第11期9980-9989,共10页
Encapsulating natural enzymes in metal—organic frameworks (MOFs) can maintain the original biological functions of enzymes in harsh environments. However, the nature of interfacial interactions between a MOF and enzy... Encapsulating natural enzymes in metal—organic frameworks (MOFs) can maintain the original biological functions of enzymes in harsh environments. However, the nature of interfacial interactions between a MOF and enzyme is currently unclear, rendering effective regulation of the biocatalytic activity of the enzyme@MOF composite difficult. Differences in the hydrophilicity of MOF carriers are closely related to the conformational changes and catalytic properties of the enzyme. In this study, the catalytic activity, stability, and conformational changes of alkaline phosphatase (ALP) encapsulated in hydrophilic zeolite imidazolate framework-90 (ZIF-90) and hydrophobic ZIF-8 were systematically investigated using experimental methods and molecular dynamics simulations. The results demonstrated that hydrophilic ZIF-90-encapsulated ALP exhibited superior stability and was 2.22-fold more retained catalytically active than hydrophobic ALP@ZIF-8 after 20 cycles of utilization. Moreover, the hydrophilic interface provided by ZIF-90 effectively regulated the structure of ALP to maintain the optimal catalytic conformation of its active center. The practical application of highly bioactive ALP@ZIF-90 was demonstrated by employing it in a self-calibrated colorimetric/fluorescence dual-mode sensing method for the efficient, reliable, and accurate detection of methyl paraoxon. This study provides new insights for improving enzyme immobilization strategies and promoting the rapid development of enzyme@MOF composites for catalytic and sensing applications. 展开更多
关键词 alkaline phosphatase metalorganic frameworks enzyme immobilization HYDROPHILIC molecular dynamics simulations
原文传递
Three-dimensional porous bimetallic metal–organic framework/gelatin aerogels: A readily recyclable peroxymonosulfate activator for efficient and continuous organic dye removal
3
作者 Wenlong Xiang Xian Zhang +1 位作者 Rou Xiao Yanhui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期193-202,共10页
As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemmin... As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management. 展开更多
关键词 Catalyst Environment Wastewater metalorganic framework Gelatin aerogel PEROXYMONOSULFATE
下载PDF
Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia 被引量:3
4
作者 Daming Feng Lixue Zhou +3 位作者 Timothy J.White Anthony K.Cheetham Tianyi Ma Fengxia Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期205-240,共36页
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineere... Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions. 展开更多
关键词 metalorganic frameworks Electrosynthesis of ammonia Nitrogen reduction reactions Nitrate reduction reactions
下载PDF
Asymmetric fireproof gel polymer electrolyte constructed by boron-contained covalent organic framework for dendrite-free sodium metal battery
5
作者 Zhanming Liu Rui Wang +5 位作者 Jiayi Yu Zhengrui Miao Zijian Xu Jianguo Ren Suli Chen Tianxi Liu 《Nano Research》 SCIE EI CSCD 2024年第11期9679-9687,共9页
Gel polymer electrolytes (GPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation sodium metal batteries (SMBs). H... Gel polymer electrolytes (GPEs) with flexibility, easy processability, and low cost have been regarded as promising alternatives for conventional liquid electrolytes in next-generation sodium metal batteries (SMBs). However, GPEs often suffer from combustion risk and inferior interfacial compatibility toward Na metal anode, which severely limit their wide commercial applications. Here, a rational design of asymmetric fireproof GPE (AFGPE) modified with a boron-contained covalent organic framework (BCOF) on one side is developed through in-situ crosslinking polymerization process. Benefiting from the unique structure and composition, the resulting AFGPE exhibits high Na+ transference number, wide electrochemical window, excellent mechanical properties and high safety. Especially, the nanoscale BCOF layer with uniform nanochannels works as ion sieve that homogenizes Na+ flux during Na plating process, while the abundant Lewis-acid B sites can strongly capture counter anions and decrease space charge layer at anode side, thus promoting the uniform Na deposition to effectively suppress dendrite growth. Consequently, the Na/AFGPE/Na symmetric cells demonstrate remarkable cycling stability for over 1200 h at 0.1 mA·cm^(-2), and the solid-state SMBs exhibit outstanding cycling properties and rate capability, delivering a high capacity retention of 96.4% under current density of 1 C for over 1000 cycles. 展开更多
关键词 gel polymer electrolyte sodium metal battery covalent organic framework FLAME-RETARDANT interfacial stability
原文传递
Metal-Organic Framework Enabling Poly(Vinylidene Fluoride)-Based Polymer Electrolyte for Dendrite-Free and Long-Lifespan Sodium Metal Batteries
6
作者 Yusi Lei Liang Yue +4 位作者 Yuruo Qi Yubin Niu Shujuan Bao Jie Song Maowen Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期68-76,共9页
Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefor... Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention. 展开更多
关键词 dendrite-free gel polymer electrolyte metal organic framework sodium batteries
下载PDF
Imide-pillared covalent organic framework protective films as stable zinc ion-conducting interphases for dendrite-free Zn metal anodes
7
作者 Xiaoman Ye Xuemei Xiao +3 位作者 Zhijing Wu Xin Wu Lin Gu Sheng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期470-477,I0010,共9页
The notorious growth of zinc dendrite and the water-induced corrosion of zinc metal anodes(ZMAs)restrict the practical development of aqueous zinc ion batteries(AZIBs).In this work,a zinc metallized,imide-pillared cov... The notorious growth of zinc dendrite and the water-induced corrosion of zinc metal anodes(ZMAs)restrict the practical development of aqueous zinc ion batteries(AZIBs).In this work,a zinc metallized,imide-pillared covalent organic framework(ZPC)protective film has been engineered as a stable Zn^(2+)ion-conducting interphase to modulate interfacial kinetics and suppress side reactions for ZMAs.Compared to bare Zn,ZPC@Zn exhibits a higher Zn^(2+)ionic conductivity,a larger Zn^(2+)transference number,a lower electronic conductivity,a smaller desolvation activation energy and correspondingly a significant suppression of corrosion,hydrogen evolution and Zn dendrites.Impressively,the ZPC@Zn||ZPC@Zn symmetric cell obtains a cycling lifespan over 3000 h under 5 mA cm^(-2)for 1 mA h cm^(-2).The ZPC@Zn||NH_(4)V_(4)O_(10)coin-type full battery delivers a specific capacity of 195.8 mA h g^(-1)with a retention rate of78.5%at 2 A g^(-1)after 1100 cycles,and the ZPC@Zn||NH_(4)V_(4)O_(10) pouch full cell shows a retention of70.1%in reversible capacity at 3 A g^(-1)after 1100 cycles.The present incorporation of imide-linked covalent organic frameworks in the surface modification of ZMAs will offer fresh perspectives in the search for ideal protective films for the practicality of AZIBs. 展开更多
关键词 Aqueous zinc ion batteries Zinc metal anodes Surface modification Covalent organic frameworks Imide linkage
下载PDF
Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks 被引量:1
8
作者 Chaozhi Xiong Zhenwu Shao +3 位作者 Jia’nan Hong Kexin Bi Qingsong Huang Chong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2297-2309,共13页
This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordinatio... This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordination and covalent bonding adapted from metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),respectively.With an emphasis on the MCOF and CMOF structures,this review surveys their building blocks and topologies.Specifically,the frameworks are classified based on the dimensions of their components(building blocks),namely,discrete building blocks and one-dimensional infinite building blocks.For the first category,the materials are further divided into collections of two-and three-dimensional networks based on their topologies.For the second category,the recently emerging MCOFs with woven structures are covered.Finally,the state-of-the-art in MCOF and CMOF chemistry has been laid out for promising avenues in future developments. 展开更多
关键词 metal–covalent organic frameworks covalent metal-organic frameworks TOPOLOGY building block
下载PDF
Metal-organic frameworks with mixed-ligands strategy as heterogeneous nucleation center to assist crystallization for efficient and stable perovskite solar cells 被引量:1
9
作者 Yayu Dong Shuang Gai +9 位作者 Jian Zhang Ruiqing Fan Boyuan Hu Wei Wang Wei Cao Jiaqi Wang Ke Zhu Debin Xia Lin Geng Yulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期1-10,I0001,共11页
Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal... Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs. 展开更多
关键词 Perovskite solar cells metal organic frameworks Mixed ligands strategy Passivation Stability
下载PDF
Integrated electrocatalysts derived from metal organic frameworks for gas-involved reactions 被引量:1
10
作者 Yuke Song Wenfu Xie +1 位作者 Mingfei Shao Xue Duan 《Nano Materials Science》 EI CAS CSCD 2023年第2期161-176,共16页
Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high... Integrated electrocatalysts(IECs)containing well-defined functional materials directly grown on the current collector have sparked increasing interest in the fields of electrocatalysis owing to efficient activity,high stability and the fact that they are easily assembled into devices.Recently,metal organic frameworks(MOFs)provide a promising platform for constructing advanced IECs because of their properties of low cost,large surface area and efficient structural tunability.In this review,the design principles of state-of-the-art IECs based on MOFs are presented,including by hydrothermal/solvothermal,template-directed,electrospinning,electrodeposition and other methods.The high performance of MOF-derived IECs has also been demonstrated in electrocatalytic gasinvolved reactions.This is promising for green energy storage and conversion.The structure-activity relationship and performance improvement mechanism of IECs are uncovered by discussing some in situ technologies for IECs.Finally,we provide an outlook on the challenges and prospects in this booming field. 展开更多
关键词 Integrated electrocatalyst metal organic framework Structure-activity relationship Gas-involved reaction
下载PDF
Large-scale computational screening of metal–organic frameworks for D_(2)/H_(2) separation 被引量:1
11
作者 Fei Wang Zhiyuan Bi +1 位作者 Lifeng Ding Qingyuan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期323-330,共8页
Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown th... Deuterium(D_(2)) is one of the important fuel sources that power nuclear fusion reactors. The existing D_(2)/H_(2) separation technologies that obtain high-purity D_(2) are cost-intensive. Recent research has shown that metal-organic frameworks(MOFs) are of good potential for D_(2)/H_(2) separation application. In this work, a high-throughput computational screening of 12020 computation-ready experimental MOFs is carried out to determine the best MOFs for hydrogen isotope separation application. Meanwhile, the detailed structure-performance correlation is systematically investigated with the aid of machine learning. The results indicate that the ideal D_(2)/H_(2) adsorption selectivity calculated based on Henry coefficient is strongly correlated with the 1/ΔAD feature descriptor;that is, inverse of the adsorbility difference of the two adsorbates. Meanwhile, the machine learning(ML) results show that the prediction accuracy of all the four ML methods is significantly improved after the addition of this feature descriptor. In addition, the ML results based on extreme gradient boosting model also revealed that the 1/ΔAD descriptor has the highest relative importance compared to other commonly-used descriptors. To further explore the effect of hydrogen isotope separation in binary mixture, 1548 MOFs with ideal adsorption selectivity greater than 1.5 are simulated at equimolar conditions. The structure-performance relationship shows that high adsorption selectivity MOFs generally have smaller pore size(0.3-0.5 nm) and lower surface area. Among the top 200 performers, the materials mainly have the sql, pcu, cds, hxl, and ins topologies.Finally, three MOFs with high D_(2)/H_(2) selectivity and good D_(2) uptake are identified as the best candidates,of all which had one-dimensional channel pore. The findings obtained in this work may be helpful for the identification of potentially promising candidates for hydrogen isotope separation. 展开更多
关键词 metalorganic frameworks Computational screening Hydrogen isotope separation
下载PDF
Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes
12
作者 Tingzheng Hou Wentao Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期313-320,I0008,共9页
The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous st... The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous structure and tunable chemical functionality,have shown enormous potential as energy storage materials for accommodating or transporting electrochemically active ions.In this perspective,we specifically focus on the current status and prospects of anionic MOF-based quasi-solid-state-electrolytes(anionic MOF-QSSEs)for lithium metal batteries(LMBs).An overview of the definition,design,and properties of anionic MOF-QSSEs is provided,including recent advances in the understanding of their ion transport mechanism.To illustrate the advantages of using anionic MOF-QSSEs as electrolytes for LMBs,a thorough comparison between anionic MOF-QSSEs and other well-studied electrolyte systems is made.With these in-depth understandings,viable techniques for tuning the chemical and topological properties of anionic MOF-QSSEs to increase Li+conductivity are discussed.Beyond modulation of the MOFs matrix,we envisage that solvent and solid-electrolyte interphase design as well as emerging fabrication techniques will aid in the design and practical application of anionic MOF-QSSEs. 展开更多
关键词 Anionic metalorganic frameworks Quasi-solid-state electrolytes Ionic conduction Lithium metal batteries Lithium-ion batteries
下载PDF
Recent Progress in Synthesis, Mechanism and Applications of Zinc-Based Metal-Organic Frameworks for Fluorescent Sensing
13
作者 Xiaojing Mao Huachang Li +2 位作者 Jiemin Liu Yehong Shi Lijun Kuai 《American Journal of Analytical Chemistry》 2023年第9期390-409,共20页
As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are ... As more and more pollutants threaten human health, it is necessary and essential to develop sensitive, accurate and rapid methods and sensory materials to detect harmful substance. Metal-organic frameworks (MOFs) are inorganic-organic hybrids assembled from inorganic metal ions or clusters and suitable organic ligands. Zinc-based MOFs (Zn-MOFs) have emerged as one of the most promising sensory material of MOFs for practical applications, and attracted significant attention due to structural diversity and incomparable stability properties. However, there are few reviews on systemic summary of synthesis design, mechanism and application of Zn-MOFs. In this review, we summarize the synthesis design methods, structure types and luminescence mechanism of Zn-MOFs sensor recognition in the past ten years and their applications in metal cations, anions, organic compounds and other analytes. Finally, we present a short conclusion, and look forward to the future development direction of Zn-MOFs. 展开更多
关键词 metal-organic frameworks POLLUTANTS Sensory Materials MECHANISM Application
下载PDF
Design of metal-organic frameworks(MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants 被引量:5
14
作者 Xiaoxue Zhao Jinze Li +2 位作者 Xin Li Pengwei Huo Weidong Shi 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第6期872-903,共32页
Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of str... Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed. 展开更多
关键词 DESIGN metal organic framework Photocatalytic performance Degradation of organic pollutants CO_(2)reduction H_(2)production
下载PDF
Two Cd(Ⅱ)Metal-organic Frameworks(MOFs)Derived from a Triazine-based Flexible Polycarboxylate Ligand:Syntheses,Crystal Structures and Luminescence
15
作者 黄艺辉 盛天录 +4 位作者 朱起龙 谭春红 傅瑞标 胡胜民 吴新涛 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第10期1572-1578,共7页
Two new metal-organic frameworks, {[Cd2CI(HL)(H20)2"0.5H20]}n (1) and {[Cd2L(H20)2]'H20}n (2), have been hydrothermally synthesized with designed ligand H4L (HaL = 1,3,5-triazine-2-iminodiacetic acid-4,6-... Two new metal-organic frameworks, {[Cd2CI(HL)(H20)2"0.5H20]}n (1) and {[Cd2L(H20)2]'H20}n (2), have been hydrothermally synthesized with designed ligand H4L (HaL = 1,3,5-triazine-2-iminodiacetic acid-4,6-biglycine) under the same condition except for different pH values. Single-crystal X-ray determination shows that they are 3-D frameworks. Complex 1 crystallizes in monoclinic, space group P21/n. Complex 2 crystallizes in triclinic, space group Pi. The photoluminescence properties of those two complexes have been investigated in solid state. Complexes 2 exhibited remarkable blue luminescence emissions with high quantum yield of 40.3% On the other hand, complexes 1 featured weak quantum yields of 13.7%. 展开更多
关键词 metal-organic framework pH value influence LUMINESCENCE
下载PDF
缺陷型巯基功能化MOF的制备及其重金属离子吸附性能
16
作者 谢林华 刘玉辉 +3 位作者 李茹霞 吕佳澳 谢亚勃 李建荣 《北京工业大学学报》 CAS CSCD 北大核心 2024年第10期1151-1161,共11页
水中的重金属离子对人体伤害巨大,特别是Pb(Ⅱ)和Hg(Ⅱ)离子,因此需要去除Pb(Ⅱ)和Hg(Ⅱ)离子。通过调节合成过程中浓盐酸的用量,合成了具有不同缺陷程度的巯基功能化锆基金属有机框架(zirconium-based metal-organic frameworks, Zr-M... 水中的重金属离子对人体伤害巨大,特别是Pb(Ⅱ)和Hg(Ⅱ)离子,因此需要去除Pb(Ⅱ)和Hg(Ⅱ)离子。通过调节合成过程中浓盐酸的用量,合成了具有不同缺陷程度的巯基功能化锆基金属有机框架(zirconium-based metal-organic frameworks, Zr-MOF)材料,简称UiO-66-(SH)_2,并将其用于液相中Pb(Ⅱ)和Hg(Ⅱ)离子的吸附去除。通过UiO-66-(SH)_2对Pb(Ⅱ)和Hg(Ⅱ)离子的吸附实验,发现随着制备过程中盐酸用量的增大,MOF的缺陷程度升高,其对Pb(Ⅱ)和Hg(Ⅱ)离子的吸附能力也有所增强。缺陷型UiO-66-(SH)_2对较低质量浓度的Pb(Ⅱ)(50 mg/L)和Hg(Ⅱ)(70 mg/L)离子的最大吸附量分别可达45和259 mg/g,且对这2种重金属离子具有较好的吸附选择性。经过3次循环吸附后,缺陷型UiO-66-(SH)_2对Pb(Ⅱ)和Hg(Ⅱ)离子的吸附能力没有明显下降,表明该材料在水中重金属离子去除应用上具有一定的潜力。 展开更多
关键词 金属有机框架(mof) 缺陷 重金属 吸附 汞离子 铅离子
下载PDF
金属有机骨架(MOFs)基复合质子交换膜的研究进展
17
作者 李磊 王园园 魏国兰 《天津工业大学学报》 CAS 北大核心 2024年第1期17-27,共11页
近年来,金属有机骨架(MOFs)材料由于具有超大的比表面积和丰富的孔道结构,作为一种新型的质子导体在质子交换膜中的应用受到越来越多的关注。随着研究的不断深入,为进一步提升MOFs复合质子交换膜的各项性能,MOFs材料在质子交换膜中的物... 近年来,金属有机骨架(MOFs)材料由于具有超大的比表面积和丰富的孔道结构,作为一种新型的质子导体在质子交换膜中的应用受到越来越多的关注。随着研究的不断深入,为进一步提升MOFs复合质子交换膜的各项性能,MOFs材料在质子交换膜中的物理形态逐渐由颗粒状向连续相发展,MOFs材料的组分也呈现出由单一组分到双组分的发展态势。本文以质子交换膜中MOFs材料的物理形态为主线,将其划分为MOFs晶体/聚合物质子交换膜、第三相增强MOFs/聚合物复合质子交换膜和MOFs纳米纤维/聚合物复合质子交换膜,全面综述了MOFs材料在质子交换膜中的研究进展,并对MOFs复合质子交换膜的发展方向进行了展望。 展开更多
关键词 金属有机框架 复合质子交换膜 质子传导率 燃料电池
下载PDF
面向空气取水的金属有机框架(MOFs)材料研究进展
18
作者 魏源送 吴其洋 郑利兵 《环境化学》 CAS CSCD 北大核心 2024年第3期751-764,共14页
空气取水技术可为干旱地区获取淡水资源提供一种新途径,其中吸附式空气取水技术是当前研究的热点之一.作为一种具有高比表面积、高孔隙率和功能可控的新型多孔材料,金属有机框架(metalorganic frameworks,MOFs)材料在吸附式空气取水技... 空气取水技术可为干旱地区获取淡水资源提供一种新途径,其中吸附式空气取水技术是当前研究的热点之一.作为一种具有高比表面积、高孔隙率和功能可控的新型多孔材料,金属有机框架(metalorganic frameworks,MOFs)材料在吸附式空气取水技术的研究中受到广泛关注.因此,该文总结了空气取水技术的基本原理和方法,从材料的适用性能和应用尝试两方面阐述面向空气取水MOFs材料的主要研究进展,并对其未来发展进行了展望. 展开更多
关键词 空气取水 金属有机框架 吸附
下载PDF
基于对苯二甲酸的MOFs对含氧阴离子的吸附及光降解研究
19
作者 陈悦 李田甜 +3 位作者 种仙娥 池立欣 钱俊峰 张致慧 《化工新型材料》 CAS CSCD 北大核心 2024年第7期273-278,共6页
以对苯二甲酸为配体与金属盐反应得到两个金属-有机框架材料Cd-MOF和UiO-66,通过X射线粉末衍射仪(XRD)、热分析仪(TG)以及氮气吸脱附对两种MOFs材料进行表征,测试材料的纯度、热稳定性以及多孔性。用所合成的材料进行吸附和光催化降解... 以对苯二甲酸为配体与金属盐反应得到两个金属-有机框架材料Cd-MOF和UiO-66,通过X射线粉末衍射仪(XRD)、热分析仪(TG)以及氮气吸脱附对两种MOFs材料进行表征,测试材料的纯度、热稳定性以及多孔性。用所合成的材料进行吸附和光催化降解含氧阴离子实验。结果表明:Cd-MOF对MnO^(-)_(4)、Cr_(2)O_(7)^(2-)和CrO_(4)^(2-)的吸附率分别可以达到100%、57%、62%,经过光降解后的去除率可达到100%、84%、87%,UiO-66对MnO^(-)_(4)、Cr_(2)O_(7)^(2-)、CrO_(4)^(2-)的吸附率分别可以达到66%、25%、60%,经过光降解后的去除率可达到99%、40%、87%。相对于吸附能力,两种MOFs材料对含氧阴离子尤其是含Cr阴离子均表现出更好的光催化降解能力,Cd-MOF对含氧阴离子的去除率优于UiO-66。机理研究表明,在光催化降解过程中产生了活性物质·O^(-)_(2)和·OH,它们的产生有助于提高降解效率。 展开更多
关键词 金属-有机框架材料 含氧阴离子 吸附 光催化降解 对苯二甲酸配体
下载PDF
MOFs@气凝胶吸附去除水中污染物的研究进展
20
作者 唐朝春 徐豪佑 +4 位作者 陈钧杰 冯文涛 阮以宣 何兴龙 刘耀中 《工业水处理》 CAS CSCD 北大核心 2024年第6期12-21,共10页
MOFs@气凝胶相较于单一的MOFs具有超高的比表面积、较高的孔隙率、较好的聚合物相容性以及出色的结构孔隙等特性,可高效吸附去除水中污染物。介绍了MOFs@气凝胶的结构和理化性质以及MOFs@气凝胶的常用合成策略,并重点分析了合成策略的... MOFs@气凝胶相较于单一的MOFs具有超高的比表面积、较高的孔隙率、较好的聚合物相容性以及出色的结构孔隙等特性,可高效吸附去除水中污染物。介绍了MOFs@气凝胶的结构和理化性质以及MOFs@气凝胶的常用合成策略,并重点分析了合成策略的优缺点以及所面临的挑战;详述了MOFs@气凝胶对污水中重金属离子和有机化合物的吸附条件和吸附性能,对相关吸附机理做了系统总结和对比;阐述了MOFs@气凝胶在吸附水中污染物方面的可重复利用性。最后针对MOFs@气凝胶中MOFs的稳定性、气凝胶的基质材料、应用范围以及干燥技术等问题提出优化方向,指出提高MOFs@气凝胶的稳定性、探索新型基质材料、扩大MOFs@气凝胶的应用范围、探寻经济绿色的合成技术将是未来的研究方向。 展开更多
关键词 mofs@气凝胶 合成 吸附 重金属 有机物 重复利用
下载PDF
上一页 1 2 178 下一页 到第
使用帮助 返回顶部