Three novel compounds, [Co(en)3]2[Zr2(C2O4)7]·2H20(HNU-2, en=ethylenediamine), [Co(NH3)6]· [Ce(CzO4)3(H2O)]·H2O(HNU-3) and [Co(dien)2][Gd(C2On)3]·0.75H2O(HNU-4, dien=dethylenetri...Three novel compounds, [Co(en)3]2[Zr2(C2O4)7]·2H20(HNU-2, en=ethylenediamine), [Co(NH3)6]· [Ce(CzO4)3(H2O)]·H2O(HNU-3) and [Co(dien)2][Gd(C2On)3]·0.75H2O(HNU-4, dien=dethylenetriamine) were hydro- thermal synthesized based on the templates of [Co(en)3]C13, [C0(NH3)6]C13 and [Co(dien)2]C13, respectively. The Zr4+ Ce3+ and Gd3+ cations are all coordinated by four oxalates to form [M(C2O4)n(H2O)n]m (M=Zr, Ce or Gd; n=0 or 1; m=4 or 5), which are similar to [In(C2O4)4]5- in NKB-1, and can be regarded as 4-connected building units. The [M(C2O4)a(H2O)n]m units are connected via sharing the bis-bidentate bridging oxalate ligands to form binuclears in HNU-2 and 1D "zigzag" chains in HNU-3 and HNU-4. cular building units to design 3D open frameworks with It is suggested that these compounds could be used as mole- zeolite topologies.展开更多
Sacrificial pre-metallation strategy could compensate for the irreversible consumption of metal ions and reduce the potential of anode,thereby elevating the cycle performance as well as open-circuit voltage for full m...Sacrificial pre-metallation strategy could compensate for the irreversible consumption of metal ions and reduce the potential of anode,thereby elevating the cycle performance as well as open-circuit voltage for full metal ion capacitors(MICs).However,suffered from massive-dosage abuse,exorbitant decomposition potential,and side effects of decomposition residue,the wide application of sacrificial approach was restricted.Herein,assisted with density functional theory calculations,strongly coupled interface(M-O-C,M=Li/Na/K)and electron donating group have been put forward to regulate the band gap and highest occupied molecular orbital level of metal oxalate(M_(2)C_(2)O_(4)),reducing polarization phenomenon and Gibbs free energy required for decomposition,which eventually decrease the practical decomposition potential from 4.50 to 3.95 V.Remarkably,full sodium ion capacitors constituted of commercial materials(activated carbon//hard carbon)could deliver a prominent energy density of 118.2 Wh kg^(−1)as well as excellent cycle stability under an ultra-low dosage pre-sodiation reagent of 15-30 wt%(far less than currently 100 wt%).Noteworthily,decomposition mechanism of sacrificial compound and the relative influence on the system of MICs after pre-metallation were initially revealed by in situ differential electrochemical mass spectrometry,offering in-depth insights for comprehending the function of cathode additives.In addition,this breakthrough has been successfully utilized in high performance lithium/potassium ion capacitors with Li_(2)C_(2)O_(4)/K_(2)C_(2)O_(4) as pre-metallation reagent,which will convincingly promote the commercialization of MICs.展开更多
In our efforts to construct new metal-organic frameworks (MOFs) by template-directing method, a new cadmium oxalate, [Co(NH3)612[Cds(C204)ll(H20)4].8H20 (denoted HNU-1 ), has been synthesized under hydrother...In our efforts to construct new metal-organic frameworks (MOFs) by template-directing method, a new cadmium oxalate, [Co(NH3)612[Cds(C204)ll(H20)4].8H20 (denoted HNU-1 ), has been synthesized under hydrothermal condition in the presence of C0(NH3)6C13, The crystal structure of HNU-1 was determined by single-crystal X-ray diffraction (monoclinic, C2/c), a = 11.126(2)A, b = 17.361 (4),A, c = 16.119(3)A, fi = 102.40(3), V = 3040.8(10) A and Z = 8. The open framework of HNU-1 contains 12-ring channels and exhibits a 5-connected sqp topological network with dinuclear Cd(ll) clusters acting as nodes. The Co(NH3)63+ cations and unusual hydrogen-bonded (H20)4 clusters are found in the 12-ring channels with an alternative arrangement. It is believed that the (H20)4 clusters play a co-templating role in the crystallization of HNU-1.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.21101047, 11204057), the Program for New Century Excellent Talents in Universities of China(No.NCET-11-0929), the Natural Science Foundation of Hainan Province, China(No. 112003), the Scientific Research Foundation in University of Hainan Province, China(No.Hjkj2012-06) and the Young Scientist Foundation of Hainan University, China(Nos.qnjj 1237, qnjj 1251).
文摘Three novel compounds, [Co(en)3]2[Zr2(C2O4)7]·2H20(HNU-2, en=ethylenediamine), [Co(NH3)6]· [Ce(CzO4)3(H2O)]·H2O(HNU-3) and [Co(dien)2][Gd(C2On)3]·0.75H2O(HNU-4, dien=dethylenetriamine) were hydro- thermal synthesized based on the templates of [Co(en)3]C13, [C0(NH3)6]C13 and [Co(dien)2]C13, respectively. The Zr4+ Ce3+ and Gd3+ cations are all coordinated by four oxalates to form [M(C2O4)n(H2O)n]m (M=Zr, Ce or Gd; n=0 or 1; m=4 or 5), which are similar to [In(C2O4)4]5- in NKB-1, and can be regarded as 4-connected building units. The [M(C2O4)a(H2O)n]m units are connected via sharing the bis-bidentate bridging oxalate ligands to form binuclears in HNU-2 and 1D "zigzag" chains in HNU-3 and HNU-4. cular building units to design 3D open frameworks with It is suggested that these compounds could be used as mole- zeolite topologies.
基金supported by the National Natural Science Foundation of China(52004338)the Hunan Provincial Natural Science Foundation of China(2020JJ5696)+2 种基金the Science,and Technology Innovation Program of Hunan Province(2020RC4005,2019RS1004)Guangdong Provincial Department of Natural Resources(2020-011)supported in part by the High Performance Computing Center of Central South University.
文摘Sacrificial pre-metallation strategy could compensate for the irreversible consumption of metal ions and reduce the potential of anode,thereby elevating the cycle performance as well as open-circuit voltage for full metal ion capacitors(MICs).However,suffered from massive-dosage abuse,exorbitant decomposition potential,and side effects of decomposition residue,the wide application of sacrificial approach was restricted.Herein,assisted with density functional theory calculations,strongly coupled interface(M-O-C,M=Li/Na/K)and electron donating group have been put forward to regulate the band gap and highest occupied molecular orbital level of metal oxalate(M_(2)C_(2)O_(4)),reducing polarization phenomenon and Gibbs free energy required for decomposition,which eventually decrease the practical decomposition potential from 4.50 to 3.95 V.Remarkably,full sodium ion capacitors constituted of commercial materials(activated carbon//hard carbon)could deliver a prominent energy density of 118.2 Wh kg^(−1)as well as excellent cycle stability under an ultra-low dosage pre-sodiation reagent of 15-30 wt%(far less than currently 100 wt%).Noteworthily,decomposition mechanism of sacrificial compound and the relative influence on the system of MICs after pre-metallation were initially revealed by in situ differential electrochemical mass spectrometry,offering in-depth insights for comprehending the function of cathode additives.In addition,this breakthrough has been successfully utilized in high performance lithium/potassium ion capacitors with Li_(2)C_(2)O_(4)/K_(2)C_(2)O_(4) as pre-metallation reagent,which will convincingly promote the commercialization of MICs.
基金supported by the National Natural Science Foundation of China (No. 21101047)the Program for New Century Excellent Talents in University (No. NCET-11-0929)+1 种基金the Natural Science Foundation of Hainan Province (No. 211010)the Priming Scientifc Research Foundation of Hainan University (No. kyqd1051)
文摘In our efforts to construct new metal-organic frameworks (MOFs) by template-directing method, a new cadmium oxalate, [Co(NH3)612[Cds(C204)ll(H20)4].8H20 (denoted HNU-1 ), has been synthesized under hydrothermal condition in the presence of C0(NH3)6C13, The crystal structure of HNU-1 was determined by single-crystal X-ray diffraction (monoclinic, C2/c), a = 11.126(2)A, b = 17.361 (4),A, c = 16.119(3)A, fi = 102.40(3), V = 3040.8(10) A and Z = 8. The open framework of HNU-1 contains 12-ring channels and exhibits a 5-connected sqp topological network with dinuclear Cd(ll) clusters acting as nodes. The Co(NH3)63+ cations and unusual hydrogen-bonded (H20)4 clusters are found in the 12-ring channels with an alternative arrangement. It is believed that the (H20)4 clusters play a co-templating role in the crystallization of HNU-1.