In this paper, controlling chaos when chaotic ferroresonant oscillations occur in a voltage transformer with nonlin- ear core loss model is performed. The effect of a parallel metal oxide surge arrester on the ferrore...In this paper, controlling chaos when chaotic ferroresonant oscillations occur in a voltage transformer with nonlin- ear core loss model is performed. The effect of a parallel metal oxide surge arrester on the ferroresonance oscillations of voltage transformers is studied. The metal oxide arrester (MOA) is found to be effective in reducing ferroresonance chaotic oscillations. Also the multiple scales method is used to analyze the chaotic behavior and different types of fixed points in ferroresonance of voltage transformers considering core loss. This phenomenon has nonlinear chaotic dynamics and includes sub-harmonic, quasi-periodic, and also chaotic oscillations. In this paper, the chaotic behavior and various ferroresonant oscillation modes of the voltage transformer is studied. This phenomenon consists of different types of bifur- cations such as period doubling bifurcation (PDB), saddle node bifurcation (SNB), Hopf bifurcation (HB), and chaos. The dynamic analysis of ferroresonant circuit is based on bifurcation theory. The bifurcation and phase plane diagrams are il- lustrated using a continuous method and linear and nonlinear models of core loss. To analyze ferroresonance phenomenon, the Lyapunov exponents are calculated via the multiple scales method to obtain Feigenbaum numbers. The bifurcation diagrams illustrate the variation of the control parameter. Therefore, the chaos is created and increased in the system.展开更多
文摘In this paper, controlling chaos when chaotic ferroresonant oscillations occur in a voltage transformer with nonlin- ear core loss model is performed. The effect of a parallel metal oxide surge arrester on the ferroresonance oscillations of voltage transformers is studied. The metal oxide arrester (MOA) is found to be effective in reducing ferroresonance chaotic oscillations. Also the multiple scales method is used to analyze the chaotic behavior and different types of fixed points in ferroresonance of voltage transformers considering core loss. This phenomenon has nonlinear chaotic dynamics and includes sub-harmonic, quasi-periodic, and also chaotic oscillations. In this paper, the chaotic behavior and various ferroresonant oscillation modes of the voltage transformer is studied. This phenomenon consists of different types of bifur- cations such as period doubling bifurcation (PDB), saddle node bifurcation (SNB), Hopf bifurcation (HB), and chaos. The dynamic analysis of ferroresonant circuit is based on bifurcation theory. The bifurcation and phase plane diagrams are il- lustrated using a continuous method and linear and nonlinear models of core loss. To analyze ferroresonance phenomenon, the Lyapunov exponents are calculated via the multiple scales method to obtain Feigenbaum numbers. The bifurcation diagrams illustrate the variation of the control parameter. Therefore, the chaos is created and increased in the system.