In modem manufacturing, a new type of sheet metal part with step cross-section in both inner hole and outer edge is proposed. The traditional stamping separating processes can only produce sheet metal part with vertic...In modem manufacturing, a new type of sheet metal part with step cross-section in both inner hole and outer edge is proposed. The traditional stamping separating processes can only produce sheet metal part with vertical cross-section. According to the latest developing theory and potential of cold pressure forming: combination of pressure and cold forging, a new flow control forming of sheet metal(FCF) is excogitated based on blanking process of general stamping and combined with cold forging processes such as extrusion and coining, etc, which is aiming at the above-mentioned new type of sheet metal part. With utilization of this new process, the new type of sheet metal parts can be manufactured. In order to shorten the testing period, the numerical simulation was carried out by using DEFORM-3D software, and both deformation and mechanics rules were analyzed. Based on the simulation, both punching part and blanked parts of this new type were successfully developed. Then a new conception of optimal distance between the step walls of inner hole and outside edge was proposed and the design principle for its numerical value was inferred. Furthermore, a mold set for combination of stamping & cold forging was designed and manufactured, by which the technologic experiments were taken for validation with Aluminum plate of thickness 2.35 mm for power battery cover board, which verified the principle of the distance between the step walls. The research of cold pressure forming of thin sheet metal with step cross-section is significant, not only to the development of modem mechanical manufacture, but also to metal plastic forming science.展开更多
The Grand Canal (Hangzhou section), People's Republic of China, has been highly contaminated by heavy metals from both industrial and municipal sources since 1950s. This study investigated the distribution of heav...The Grand Canal (Hangzhou section), People's Republic of China, has been highly contaminated by heavy metals from both industrial and municipal sources since 1950s. This study investigated the distribution of heavy metals including As, Cr, Cd, Cu, Ni, Pb, and Zn. The results showed that these metals are largely accumulated in the top 0 3 meter layer of the river sediment.Despite the contamination, heavy metal concentrations in solution are increased in some locations only. The only exception is Zn whose concentrations are extremely high both in solution and in the top layer sediment. The top layer sediment appears to have reached almost its sorption capacity with respect to aqueous Zn. The extent of contamination is in the sequence of Zn>Cu>Pb>As>Cd. It is speculated that Cu distribution has been significantly affected by its binding to organic matter in the top layer sediment. Based on Pb distribution in both water and sediment, it is suggested that Pb transport in the canal is associated with colloids or particles suspended in water. The study showed that the top layer sediment in the Grand Canal serves as a sink to anthropogenic contaminants consisting of heavy metals as well as organic compounds.展开更多
THz Radar Cross Section(RCS)measurement setup based on THz Time Domain Spectroscopy(TDS)is built to provide large scaled targets test ability in recent years.As calibrations,the metal plates and dihedrons are used in ...THz Radar Cross Section(RCS)measurement setup based on THz Time Domain Spectroscopy(TDS)is built to provide large scaled targets test ability in recent years.As calibrations,the metal plates and dihedrons are used in our experiments.The measurements are performed in a monostatic terahertz time-domain setup.The author proposed time domain and frequency domain calibration methods for angular RCS of calibrations,comparing the measurements with the theory to verify the ability of the time domain measurement setup.展开更多
Laser multipass welding techniques for thick section steels have been developed using a new type of UV combined narrow groove. The shape and sizes at the bottom of groove are determined by analyzing the plasma behavio...Laser multipass welding techniques for thick section steels have been developed using a new type of UV combined narrow groove. The shape and sizes at the bottom of groove are determined by analyzing the plasma behavior using high speed photographic equipment. A stable autogenous CO2 laser welding process and greater penetration are generated at the root pass because of strong reduction of the plasma volume. According to the waveforms of welding current and arc voltage, and the interaction between the arc and the laser induced plasma, a suitable groove angle is obtained. Laser-double MIG hybrid welding process is studied and the optimum distances between the laser and two arcs are determined. By using autogenous CO2 laser welding, CO2 laser-MIG hybrid welding and laser-double MIG hybrid welding, 28 mm thick steel plates are welded with four passes. The welds produced are assessed by X-ray. No crack is found and there is only a small amount of pores. The experimental results show that the multipuss welding procedures proposed can realize the joining of thick section steels with high efficiency and good quality.展开更多
文摘In modem manufacturing, a new type of sheet metal part with step cross-section in both inner hole and outer edge is proposed. The traditional stamping separating processes can only produce sheet metal part with vertical cross-section. According to the latest developing theory and potential of cold pressure forming: combination of pressure and cold forging, a new flow control forming of sheet metal(FCF) is excogitated based on blanking process of general stamping and combined with cold forging processes such as extrusion and coining, etc, which is aiming at the above-mentioned new type of sheet metal part. With utilization of this new process, the new type of sheet metal parts can be manufactured. In order to shorten the testing period, the numerical simulation was carried out by using DEFORM-3D software, and both deformation and mechanics rules were analyzed. Based on the simulation, both punching part and blanked parts of this new type were successfully developed. Then a new conception of optimal distance between the step walls of inner hole and outside edge was proposed and the design principle for its numerical value was inferred. Furthermore, a mold set for combination of stamping & cold forging was designed and manufactured, by which the technologic experiments were taken for validation with Aluminum plate of thickness 2.35 mm for power battery cover board, which verified the principle of the distance between the step walls. The research of cold pressure forming of thin sheet metal with step cross-section is significant, not only to the development of modem mechanical manufacture, but also to metal plastic forming science.
文摘The Grand Canal (Hangzhou section), People's Republic of China, has been highly contaminated by heavy metals from both industrial and municipal sources since 1950s. This study investigated the distribution of heavy metals including As, Cr, Cd, Cu, Ni, Pb, and Zn. The results showed that these metals are largely accumulated in the top 0 3 meter layer of the river sediment.Despite the contamination, heavy metal concentrations in solution are increased in some locations only. The only exception is Zn whose concentrations are extremely high both in solution and in the top layer sediment. The top layer sediment appears to have reached almost its sorption capacity with respect to aqueous Zn. The extent of contamination is in the sequence of Zn>Cu>Pb>As>Cd. It is speculated that Cu distribution has been significantly affected by its binding to organic matter in the top layer sediment. Based on Pb distribution in both water and sediment, it is suggested that Pb transport in the canal is associated with colloids or particles suspended in water. The study showed that the top layer sediment in the Grand Canal serves as a sink to anthropogenic contaminants consisting of heavy metals as well as organic compounds.
基金The Science and Technology Commission of Shanghai Municipality under Grant(16ZR1435000)
文摘THz Radar Cross Section(RCS)measurement setup based on THz Time Domain Spectroscopy(TDS)is built to provide large scaled targets test ability in recent years.As calibrations,the metal plates and dihedrons are used in our experiments.The measurements are performed in a monostatic terahertz time-domain setup.The author proposed time domain and frequency domain calibration methods for angular RCS of calibrations,comparing the measurements with the theory to verify the ability of the time domain measurement setup.
文摘Laser multipass welding techniques for thick section steels have been developed using a new type of UV combined narrow groove. The shape and sizes at the bottom of groove are determined by analyzing the plasma behavior using high speed photographic equipment. A stable autogenous CO2 laser welding process and greater penetration are generated at the root pass because of strong reduction of the plasma volume. According to the waveforms of welding current and arc voltage, and the interaction between the arc and the laser induced plasma, a suitable groove angle is obtained. Laser-double MIG hybrid welding process is studied and the optimum distances between the laser and two arcs are determined. By using autogenous CO2 laser welding, CO2 laser-MIG hybrid welding and laser-double MIG hybrid welding, 28 mm thick steel plates are welded with four passes. The welds produced are assessed by X-ray. No crack is found and there is only a small amount of pores. The experimental results show that the multipuss welding procedures proposed can realize the joining of thick section steels with high efficiency and good quality.