In blast furnace (BF) iron-making process, the hot metal silicon content was usually used to measure the quality of hot metal and to reflect the thermal state of BF. Principal component analysis (PCA) and partial ...In blast furnace (BF) iron-making process, the hot metal silicon content was usually used to measure the quality of hot metal and to reflect the thermal state of BF. Principal component analysis (PCA) and partial least- square (PLS) regression methods were used to predict the hot metal silicon content. Under the conditions of BF rela- tively stable situation, PCA and PLS regression models of hot metal silicon content utilizing data from Baotou Steel No. 6 BF were established, which provided the accuracy of 88.4% and 89.2%. PLS model used less variables and time than principal component analysis model, and it was simple to calculate. It is shown that the model gives good results and is helpful for practical production.展开更多
Some key operation variables influencing hot metal silicon content were selected, and time lag of each of them was obtained. A standardized fuzzy system model was developed to approach the random nonlinear dynamic sys...Some key operation variables influencing hot metal silicon content were selected, and time lag of each of them was obtained. A standardized fuzzy system model was developed to approach the random nonlinear dynamic system of the change of silicon content, forecast the change of silicon content and calculate silicon content. The prediction of hot metal silicon content is very successful with the data collected online from BF No. 1 at Laiwu Iron and Steel Group Co.展开更多
The metal-free synthesis of graphene on singlecrystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth ...The metal-free synthesis of graphene on singlecrystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed,single-crystal silicon substrate using metal-free, ambientpressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates.展开更多
To resolve the difficulty in slag formation during steelmaking with low silicon hot metal and to increase productivity, a new 5-hole lance was developed by increasing oxygen flow from 50 000 m^3/h to 60 000 m^3/h. Syn...To resolve the difficulty in slag formation during steelmaking with low silicon hot metal and to increase productivity, a new 5-hole lance was developed by increasing oxygen flow from 50 000 m^3/h to 60 000 m^3/h. Synthetic slag was added to adjust the slag composition. The problems such as difficulty in dephosphorization and slag adhesion to oxygen lance and hood were settled. Steel production and metal yield were increased and the nozzle life was prolonged through these techniques.展开更多
The time series data of silicon content in hot metal were identified to have the chaotic feature because of the positive maximum Lyapunov exponent, and then the time scales to predict future were estimated. Finally a ...The time series data of silicon content in hot metal were identified to have the chaotic feature because of the positive maximum Lyapunov exponent, and then the time scales to predict future were estimated. Finally a chaotic local-region model was constructed to predict silicon content in hot metal with good performance due to high hitting rate.展开更多
The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size le...The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size less than 0.1 mm was most effective for acid leaching; the extraction yield of impurities was increased by 9% with HF leaching compared with HCl leaching and HNO3 leaching, and increased by 7% with ultrasonic stirring compared with mechanical stirring. The principle of hydrometallurgical purification of metallurgical grade silicon under ultrasonic fields was also discussed.展开更多
A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit ...A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.展开更多
A 4H-silicon carbide metal-insulator-semiconductor structure with ultra-thin Al2O3 as the gate dielectric, deposited by atomic layer deposition on tile epitaxial layer of a 4H-SiC (0001) 80N-/N+ substrate, has been...A 4H-silicon carbide metal-insulator-semiconductor structure with ultra-thin Al2O3 as the gate dielectric, deposited by atomic layer deposition on tile epitaxial layer of a 4H-SiC (0001) 80N-/N+ substrate, has been fabricated. The experimental results indicate that the prepared ultra-thin Al2O3 gate dielectric exhibits good physical and electrical characteristics, including a high breakdown electrical field of 25 MV/cm, excellent interface properties (1 × 10^14 cm^-2) and low gate-leakage current (IG = 1 × 10^-3 A/cm 2@Eox = 8 MV/cm). Analysis of the current conduction mecha- nism on the deposited Al2O3 gate dielectric was also systematically performed. The confirmed conduction mechanisms consisted of Fowler-Nordheim (FN) tuaneling, the Frenkel-Poole mechanism, direct tunneling and Schottky emission, and the dominant current conduction mechanism depends on the applied electrical field. When the gate leakage current mechanism is dominated by FN tunneling, the barrier height of SiC/Al2O3 is 1.4 eV, which can meet the requirements of silicon carbide metal-insulator-semiconductor transistor devices.展开更多
Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercala- tion, seven different metals have been successfully intercalated at the interface of graphene/Ru(O...Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercala- tion, seven different metals have been successfully intercalated at the interface of graphene/Ru(O001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(O001) and on Ir(l I 1), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications.展开更多
There are some problems in steelmaking with hot metal containing low silicon content such as difficulty in slag formation, less slag for dephosphorization and slag adhesion on oxygen lance and hood. To overcome these ...There are some problems in steelmaking with hot metal containing low silicon content such as difficulty in slag formation, less slag for dephosphorization and slag adhesion on oxygen lance and hood. To overcome these problems, experiments wcrc conducted and some improvements were obtained, such as adding appropriate flux, increasing the lance position slightly during steelmaking and using effective multi-outlet nozzle. Moreover, to keep normal heating rate, the ore and scrap charge should be reduced due to less chemical heat input in steelmaking.展开更多
The wettability of monocrystalline silicon carbide by liquid metals (Au , Ge, Ag , Sn and Cu) and binarymetal-silicon (Ag-Si and Sn-Si) alloys was investigated between their melting points and 1430℃ with the ses-sile...The wettability of monocrystalline silicon carbide by liquid metals (Au , Ge, Ag , Sn and Cu) and binarymetal-silicon (Ag-Si and Sn-Si) alloys was investigated between their melting points and 1430℃ with the ses-sile drop method in argon with an extremely low oxygen partial pressure. For Au and Ge on SiC, the contactangles exhibited a weak temperature dependence. Under the same experimental conditions, however, complexwetting behaviours were observed for Ag , Sn and Cu on SiC , which could be attributed to the chemical reactivi-ties between the metals and the ceramic.Additional experirnents were also performed for binary Ag-Si and Sn-Si alloys on the same SiC substratesunder the same experimental conditions. The obtained coiitact angle isotherms for the two binary alloy/SiC sys-tems were discussed and interpreted by using a statistical thermedynamics mixlel.展开更多
Sub-threshold characteristics of the dual material gate 4H-SiC MESFET (DMGFET) are investigated and the analytical models to describe the drain-induced barrier lowering (DIBL) effect are derived by solving one- an...Sub-threshold characteristics of the dual material gate 4H-SiC MESFET (DMGFET) are investigated and the analytical models to describe the drain-induced barrier lowering (DIBL) effect are derived by solving one- and two- dimensional Poisson's equations. Using these models, we calculate the bottom potential of the channel and the threshold voltage shift, which characterize the drain-induced barrier lowering (DIBL) effect. The calculated results reveal that the dual material gate (DMG) structure alleviates the deterioration of the threshold voltage and thus suppresses the DIBL effect due to the introduced step function, which originates from the work function difference of the two gate materials when compared with the conventional single material gate metal-semiconductor field-effect transistor (SMGFET).展开更多
We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slo...We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.展开更多
A new 4H silicon carbide metal semiconductor field-effect transistor (4H-SiC MESFET) structure with a buffer layer between the gate and the channel layer is proposed in this paper for high power microwave applicatio...A new 4H silicon carbide metal semiconductor field-effect transistor (4H-SiC MESFET) structure with a buffer layer between the gate and the channel layer is proposed in this paper for high power microwave applications. The physics-based analytical models for calculating the performance of the proposed device are obtained by solving one- and two-dimensional Poisson's equations. In the models, we take into account not only two regions under the gate but also a third high field region between the gate and the drain which is usually omitted. The direct-current and the alternating- current performances for the proposed 4H-SiC MESFET with a buffer layer of 0.2 ~tm are calculated. The calculated results are in good agreement with the experimental data. The current is larger than that of the conventional structure. The cutoff frequency (fT) and the maximum oscillation frequency (fmax) are 20.4 GHz and 101.6 GHz, respectively, which are higher than 7.8 GHz and 45.3 GHz of the conventional structure. Therefore, the proposed 4H-SiC MESFET structure has better power and microwave performances than the conventional structure.展开更多
An improved structure of silicon carbide metal-semiconductor field-effect transistors (MESFET) is proposed for high power microwave applications. Numerical models for the physical and electrical mechanisms of the de...An improved structure of silicon carbide metal-semiconductor field-effect transistors (MESFET) is proposed for high power microwave applications. Numerical models for the physical and electrical mechanisms of the device are presented, and the static and dynamic electrical performances are analysed. By comparison with the conventional structure, the proposed structure exhibits a superior frequency response while possessing better DC characteristics. A p-type spacer layer, inserted between the oxide and the channel, is shown to suppress the surface trap effect and improve the distribution of the electric field at the gate edge. Meanwhile, a lightly doped n-type buffer layer under the gate reduces depletion in the channel, resulting in an increase in the output current and a reduction in the gate-capacitance. The structural parameter dependences of the device performance are discussed, and an optimized design is obtained. The results show that the maximum saturation current density of 325 mA/mm is yielded, compared with 182 mA/mm for conventional MESFETs under the condition that the breakdown voltage of the proposed MESFET is larger than that of the conventional MESFET, leading to an increase of 79% in the output power density. In addition, improvements of 27% cut-off frequency and 28% maximum oscillation frequency are achieved compared with a conventional MESFET, respectively.展开更多
The Commemorative Plaque Industry thrives at the hands of the local craftsmen in Ghana. Techniques, methods, tools, and materials used as handed to them by their previous masters have remained the same over the years....The Commemorative Plaque Industry thrives at the hands of the local craftsmen in Ghana. Techniques, methods, tools, and materials used as handed to them by their previous masters have remained the same over the years. As a result, plaques produced had peculiar problems such as text fading, degrading the actual effect of the plaques. Additionally, metals once widely used for making plaques devoid of text fading in the industry seem to have lost their relevance due to metal plaque theft, rust on metal plaques, and the continuous rise in metal prices. This research uses descriptive, experimental, and case studies of the qualitative research method to examine the problems associated with locally produced commemorative plaques. A total of hundred (100) artisans, including metal scrap dealers, and plaque buyers, were selected for the study. Direct observation and face-to-face interviews were conducted with the local craftsmen, art lecturers and students, scrap dealers, and plaque buyers who were purposively sampled for the study. The study revealed that existing materials like ceramic and aluminium could be integrated innovatively to produce commemorative plaques devoid of text fading;a corrosion-resistant text could be made using anodized or coated metals used in smaller quantities to reduce costs while also making them unattractive for theft and lastly, silicone sealant was found to be a viable option for permanently inscribing text on porcelain bases. The results clarify and underline the necessity to grow the local plaque industry in terms of plaque production as another essential basis to assure high-quality plaques with no text fading that will survive for generations to serve their intended purpose.展开更多
A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties...A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as cast and as welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al Si Fe Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al Si Mg Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper eutectic aluminum silicon alloy with 27% Si and 1% Ni.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51064019)Natural Science Foundation of Inner Mongolia of China(20010MS0911,NJzy08075)
文摘In blast furnace (BF) iron-making process, the hot metal silicon content was usually used to measure the quality of hot metal and to reflect the thermal state of BF. Principal component analysis (PCA) and partial least- square (PLS) regression methods were used to predict the hot metal silicon content. Under the conditions of BF rela- tively stable situation, PCA and PLS regression models of hot metal silicon content utilizing data from Baotou Steel No. 6 BF were established, which provided the accuracy of 88.4% and 89.2%. PLS model used less variables and time than principal component analysis model, and it was simple to calculate. It is shown that the model gives good results and is helpful for practical production.
文摘Some key operation variables influencing hot metal silicon content were selected, and time lag of each of them was obtained. A standardized fuzzy system model was developed to approach the random nonlinear dynamic system of the change of silicon content, forecast the change of silicon content and calculate silicon content. The prediction of hot metal silicon content is very successful with the data collected online from BF No. 1 at Laiwu Iron and Steel Group Co.
基金financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11405253, 11225527, 11575283, 11205235, U1632129, U1332205)Shanghai Science Foundation (14YF1407500)the Youth Innovation Promotion Association CAS (2016237)
文摘The metal-free synthesis of graphene on singlecrystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed,single-crystal silicon substrate using metal-free, ambientpressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates.
文摘To resolve the difficulty in slag formation during steelmaking with low silicon hot metal and to increase productivity, a new 5-hole lance was developed by increasing oxygen flow from 50 000 m^3/h to 60 000 m^3/h. Synthetic slag was added to adjust the slag composition. The problems such as difficulty in dephosphorization and slag adhesion to oxygen lance and hood were settled. Steel production and metal yield were increased and the nozzle life was prolonged through these techniques.
文摘The time series data of silicon content in hot metal were identified to have the chaotic feature because of the positive maximum Lyapunov exponent, and then the time scales to predict future were estimated. Finally a chaotic local-region model was constructed to predict silicon content in hot metal with good performance due to high hitting rate.
基金supported by the National Natural Science Foundation of China (No. 50674018)
文摘The effects of the particle size of ground metallurgical grade silicon (MG-Si), the sort of acids, and the type of stirring on the purified efficiency of MG-Si were investigated. It was found that a particle size less than 0.1 mm was most effective for acid leaching; the extraction yield of impurities was increased by 9% with HF leaching compared with HCl leaching and HNO3 leaching, and increased by 7% with ultrasonic stirring compared with mechanical stirring. The principle of hydrometallurgical purification of metallurgical grade silicon under ultrasonic fields was also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60536030,61036002,60776024,60877035 and 61036009)National High Technology Research and Development Program of China(Grant Nos.2007AA04Z329 and 2007AA04Z254)
文摘A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.
基金supported by the 2010 School Fundamental Scientific Research Fund of Xidian University (Grant No. K50510250008)
文摘A 4H-silicon carbide metal-insulator-semiconductor structure with ultra-thin Al2O3 as the gate dielectric, deposited by atomic layer deposition on tile epitaxial layer of a 4H-SiC (0001) 80N-/N+ substrate, has been fabricated. The experimental results indicate that the prepared ultra-thin Al2O3 gate dielectric exhibits good physical and electrical characteristics, including a high breakdown electrical field of 25 MV/cm, excellent interface properties (1 × 10^14 cm^-2) and low gate-leakage current (IG = 1 × 10^-3 A/cm 2@Eox = 8 MV/cm). Analysis of the current conduction mecha- nism on the deposited Al2O3 gate dielectric was also systematically performed. The confirmed conduction mechanisms consisted of Fowler-Nordheim (FN) tuaneling, the Frenkel-Poole mechanism, direct tunneling and Schottky emission, and the dominant current conduction mechanism depends on the applied electrical field. When the gate leakage current mechanism is dominated by FN tunneling, the barrier height of SiC/Al2O3 is 1.4 eV, which can meet the requirements of silicon carbide metal-insulator-semiconductor transistor devices.
基金supported by the National Basic Research Program of China (Grant Nos. 2013CBA01600, 2011CB932700, 2009CB929103, and 2010CB923004)the National Natural Science Foundation of China, and the Chinese Acedemy of Sciences
文摘Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercala- tion, seven different metals have been successfully intercalated at the interface of graphene/Ru(O001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(O001) and on Ir(l I 1), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications.
文摘There are some problems in steelmaking with hot metal containing low silicon content such as difficulty in slag formation, less slag for dephosphorization and slag adhesion on oxygen lance and hood. To overcome these problems, experiments wcrc conducted and some improvements were obtained, such as adding appropriate flux, increasing the lance position slightly during steelmaking and using effective multi-outlet nozzle. Moreover, to keep normal heating rate, the ore and scrap charge should be reduced due to less chemical heat input in steelmaking.
文摘The wettability of monocrystalline silicon carbide by liquid metals (Au , Ge, Ag , Sn and Cu) and binarymetal-silicon (Ag-Si and Sn-Si) alloys was investigated between their melting points and 1430℃ with the ses-sile drop method in argon with an extremely low oxygen partial pressure. For Au and Ge on SiC, the contactangles exhibited a weak temperature dependence. Under the same experimental conditions, however, complexwetting behaviours were observed for Ag , Sn and Cu on SiC , which could be attributed to the chemical reactivi-ties between the metals and the ceramic.Additional experirnents were also performed for binary Ag-Si and Sn-Si alloys on the same SiC substratesunder the same experimental conditions. The obtained coiitact angle isotherms for the two binary alloy/SiC sys-tems were discussed and interpreted by using a statistical thermedynamics mixlel.
基金Project supported by the Pre-research Foundation from the National Ministries and Commissions of China (GrantNo.51308030201)
文摘Sub-threshold characteristics of the dual material gate 4H-SiC MESFET (DMGFET) are investigated and the analytical models to describe the drain-induced barrier lowering (DIBL) effect are derived by solving one- and two- dimensional Poisson's equations. Using these models, we calculate the bottom potential of the channel and the threshold voltage shift, which characterize the drain-induced barrier lowering (DIBL) effect. The calculated results reveal that the dual material gate (DMG) structure alleviates the deterioration of the threshold voltage and thus suppresses the DIBL effect due to the introduced step function, which originates from the work function difference of the two gate materials when compared with the conventional single material gate metal-semiconductor field-effect transistor (SMGFET).
基金Supported by the Key Grant Project of the Ministry of Education of China under Grant No 313007
文摘We present a silicon slot waveguide with metallic gratings embedded on the silicon surface in the slot region. The dependence of the optical coupling between two silicon wires on the width of the metal gap and the slot size are studied in detail. The results show that the optical field in the slot region with metallic gratings is significantly enhanced compared with the traditional slot waveguide due to the surface plasmon polaritons coupling on metallic gratings. The extraordinary optical confinement is attributed to the low effective dielectric constant of metallic gratings. The effective dielectric constant decreases with the increasing wavelength, and reaches the minimum when the width of the metal gap is about 0.01 times the wavelength.
基金Project supported by the Pre-research Foundation from the National Ministries and Commissions of China(Grant No.51308030201)
文摘A new 4H silicon carbide metal semiconductor field-effect transistor (4H-SiC MESFET) structure with a buffer layer between the gate and the channel layer is proposed in this paper for high power microwave applications. The physics-based analytical models for calculating the performance of the proposed device are obtained by solving one- and two-dimensional Poisson's equations. In the models, we take into account not only two regions under the gate but also a third high field region between the gate and the drain which is usually omitted. The direct-current and the alternating- current performances for the proposed 4H-SiC MESFET with a buffer layer of 0.2 ~tm are calculated. The calculated results are in good agreement with the experimental data. The current is larger than that of the conventional structure. The cutoff frequency (fT) and the maximum oscillation frequency (fmax) are 20.4 GHz and 101.6 GHz, respectively, which are higher than 7.8 GHz and 45.3 GHz of the conventional structure. Therefore, the proposed 4H-SiC MESFET structure has better power and microwave performances than the conventional structure.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.60725415)the National Natural Science Foundation of China(Grant No.60606006)the Pre-research Foundation of China(Grant No.51308030201)
文摘An improved structure of silicon carbide metal-semiconductor field-effect transistors (MESFET) is proposed for high power microwave applications. Numerical models for the physical and electrical mechanisms of the device are presented, and the static and dynamic electrical performances are analysed. By comparison with the conventional structure, the proposed structure exhibits a superior frequency response while possessing better DC characteristics. A p-type spacer layer, inserted between the oxide and the channel, is shown to suppress the surface trap effect and improve the distribution of the electric field at the gate edge. Meanwhile, a lightly doped n-type buffer layer under the gate reduces depletion in the channel, resulting in an increase in the output current and a reduction in the gate-capacitance. The structural parameter dependences of the device performance are discussed, and an optimized design is obtained. The results show that the maximum saturation current density of 325 mA/mm is yielded, compared with 182 mA/mm for conventional MESFETs under the condition that the breakdown voltage of the proposed MESFET is larger than that of the conventional MESFET, leading to an increase of 79% in the output power density. In addition, improvements of 27% cut-off frequency and 28% maximum oscillation frequency are achieved compared with a conventional MESFET, respectively.
文摘The Commemorative Plaque Industry thrives at the hands of the local craftsmen in Ghana. Techniques, methods, tools, and materials used as handed to them by their previous masters have remained the same over the years. As a result, plaques produced had peculiar problems such as text fading, degrading the actual effect of the plaques. Additionally, metals once widely used for making plaques devoid of text fading in the industry seem to have lost their relevance due to metal plaque theft, rust on metal plaques, and the continuous rise in metal prices. This research uses descriptive, experimental, and case studies of the qualitative research method to examine the problems associated with locally produced commemorative plaques. A total of hundred (100) artisans, including metal scrap dealers, and plaque buyers, were selected for the study. Direct observation and face-to-face interviews were conducted with the local craftsmen, art lecturers and students, scrap dealers, and plaque buyers who were purposively sampled for the study. The study revealed that existing materials like ceramic and aluminium could be integrated innovatively to produce commemorative plaques devoid of text fading;a corrosion-resistant text could be made using anodized or coated metals used in smaller quantities to reduce costs while also making them unattractive for theft and lastly, silicone sealant was found to be a viable option for permanently inscribing text on porcelain bases. The results clarify and underline the necessity to grow the local plaque industry in terms of plaque production as another essential basis to assure high-quality plaques with no text fading that will survive for generations to serve their intended purpose.
文摘A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as cast and as welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al Si Fe Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al Si Mg Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper eutectic aluminum silicon alloy with 27% Si and 1% Ni.