The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and...The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond.展开更多
The concentrations of seven heavy metals (Pb, Cu, Zn, Cr, Fe, Cd and Mn) were determined in the organs of Rana esculenta (frog) obtained from River Guma, Benue State of Nigeria using Atomic Absorption Spectrophotomete...The concentrations of seven heavy metals (Pb, Cu, Zn, Cr, Fe, Cd and Mn) were determined in the organs of Rana esculenta (frog) obtained from River Guma, Benue State of Nigeria using Atomic Absorption Spectrophotometer. The analysis of the triplicate experiments showed that the intestine contained the lowest concentration (25.9%) of all the heavy metals detected, followed by the skin (30.5%), while the liver contained the highest concentration (43.6%). In all the frog organs, Fe had the highest concentration in the liver, followed by skin and lowest in the intestine. The trend of the heavy metals concentration in the organs can be represented as: Fe > Mn > Pb > Zn > Cu > Cr > Cd. The concentrations of all the metals in the liver, skin and intestine of the frog were found to be statistically significant. Generally, the levels of Pb, Fe, Cr and Mn in all the samples were analyzed above the tolerance limits by the WHO with exception of Cd, Cu and Zn that were below the permissible limits in the samples.展开更多
基金the financial support from the National Natural Science Foundation of China (52125301 and 52203123)the Fundamental Research Funds for the Central Universitiespartially sponsored by the Double First-Class Construction Funds of Sichuan University。
文摘The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond.
文摘The concentrations of seven heavy metals (Pb, Cu, Zn, Cr, Fe, Cd and Mn) were determined in the organs of Rana esculenta (frog) obtained from River Guma, Benue State of Nigeria using Atomic Absorption Spectrophotometer. The analysis of the triplicate experiments showed that the intestine contained the lowest concentration (25.9%) of all the heavy metals detected, followed by the skin (30.5%), while the liver contained the highest concentration (43.6%). In all the frog organs, Fe had the highest concentration in the liver, followed by skin and lowest in the intestine. The trend of the heavy metals concentration in the organs can be represented as: Fe > Mn > Pb > Zn > Cu > Cr > Cd. The concentrations of all the metals in the liver, skin and intestine of the frog were found to be statistically significant. Generally, the levels of Pb, Fe, Cr and Mn in all the samples were analyzed above the tolerance limits by the WHO with exception of Cd, Cu and Zn that were below the permissible limits in the samples.