The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
For enhancing the electromagnetic wave(EW)attenuation and adsorption,rational constructing and homogeneously distributing bimetallic electromagnetic coupling units in hollow structure is an effective way,but hard to a...For enhancing the electromagnetic wave(EW)attenuation and adsorption,rational constructing and homogeneously distributing bimetallic electromagnetic coupling units in hollow structure is an effective way,but hard to achieve.Herein,a CoNi-doped hybrid zeolite imidazole framework was synthesized as precursor,which was further converted into a hollow CoNi-bimetallic doped molyb-denum carbide sphere(H-CoNi@MoC/NC)through a two-step etching and calcination strategy.At the loading amount of 15 wt%,a strong absorption of minimum reflection loss(RL_(min))of-60.05 dB at 7.2 GHz with the thickness of 3.1 mm and a wide effective ad-sorption bandwidth(EAB)of 3.52 GHz at the thickness of 2.5 mm were achieved,which was far beyond the reported MoC-based metallic hybrids.The crucial synergistic Co-Ni electromagnetic coupling effect in the composite was characterized,not only enhanc-ing the dipolar/interfacial polarization,but also promoting the impedance matching,displaying the optimized EW absorbing perfor-mance.展开更多
Electronic devices pervade everyday life,which has triggered severe electromagnetic(EM)wave pollution.To face this challenge,developing EM wave absorbers with ultra-broadband absorption capacity is critically required...Electronic devices pervade everyday life,which has triggered severe electromagnetic(EM)wave pollution.To face this challenge,developing EM wave absorbers with ultra-broadband absorption capacity is critically required.Currently,nano-composite construction has been widely utilized to realize impedance match and broadband absorption.However,complex experimental procedures,limited thermal stability,and interior oxidation resistance are still unneglectable issues.Therefore,it is appealing to realize ultra-broadband EM wave absorption in single-phase materials with good stability.Aiming at this target,two high-entropy transition metal carbides(HE TMCs)including(Zr,Hf,Nb,Ta)C(HE TMC-2)and(Cr,Zr,Hf,Nb,Ta)C(HE TMC-3)are designed and synthesized,of which the microwave absorption performance is investigated in comparison with previously reported(Ti,Zr,Hf,Nb,Ta)C(HE TMC-1).Due to the synergistic effects of dielectric and magnetic losses,HE TMC-2 and HE TMC-3 exhibit better impedance match and wider effective absorption bandwidth(EAB).In specific,the exclusion of Ti element in HE TMC-2 endows it optimal minimum reflection loss(RL_(min))and EAB of−41.7 dB(2.11 mm,10.52 GHz)and 3.5 GHz(at 3.0 mm),respectively.Remarkably,the incorporation of Cr element in HE TMC-3 significantly improves the impedance match,thus realizing EAB of 10.5,9.2,and 13.9 GHz at 2,3,and 4 mm,respectively.The significance of this study lays on realizing ultra-broadband capacity in HE TMC-3(Cr,Zr,Hf,Nb,Ta),demonstrating the effectiveness of high-entropy component design in tailoring the impedance match.展开更多
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
基金financially supported by the National Natural Science Foundation of China(22001156,22271178)the Youth Talent Fund of University Association for Science and Technology in Shaanxi,China(20210602)International Cooperation Key Project of Science and Technology Department of Shaanxi,China(2022KWZ-06).
文摘For enhancing the electromagnetic wave(EW)attenuation and adsorption,rational constructing and homogeneously distributing bimetallic electromagnetic coupling units in hollow structure is an effective way,but hard to achieve.Herein,a CoNi-doped hybrid zeolite imidazole framework was synthesized as precursor,which was further converted into a hollow CoNi-bimetallic doped molyb-denum carbide sphere(H-CoNi@MoC/NC)through a two-step etching and calcination strategy.At the loading amount of 15 wt%,a strong absorption of minimum reflection loss(RL_(min))of-60.05 dB at 7.2 GHz with the thickness of 3.1 mm and a wide effective ad-sorption bandwidth(EAB)of 3.52 GHz at the thickness of 2.5 mm were achieved,which was far beyond the reported MoC-based metallic hybrids.The crucial synergistic Co-Ni electromagnetic coupling effect in the composite was characterized,not only enhanc-ing the dipolar/interfacial polarization,but also promoting the impedance matching,displaying the optimized EW absorbing perfor-mance.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.51972089,51672064,and U1435206).
文摘Electronic devices pervade everyday life,which has triggered severe electromagnetic(EM)wave pollution.To face this challenge,developing EM wave absorbers with ultra-broadband absorption capacity is critically required.Currently,nano-composite construction has been widely utilized to realize impedance match and broadband absorption.However,complex experimental procedures,limited thermal stability,and interior oxidation resistance are still unneglectable issues.Therefore,it is appealing to realize ultra-broadband EM wave absorption in single-phase materials with good stability.Aiming at this target,two high-entropy transition metal carbides(HE TMCs)including(Zr,Hf,Nb,Ta)C(HE TMC-2)and(Cr,Zr,Hf,Nb,Ta)C(HE TMC-3)are designed and synthesized,of which the microwave absorption performance is investigated in comparison with previously reported(Ti,Zr,Hf,Nb,Ta)C(HE TMC-1).Due to the synergistic effects of dielectric and magnetic losses,HE TMC-2 and HE TMC-3 exhibit better impedance match and wider effective absorption bandwidth(EAB).In specific,the exclusion of Ti element in HE TMC-2 endows it optimal minimum reflection loss(RL_(min))and EAB of−41.7 dB(2.11 mm,10.52 GHz)and 3.5 GHz(at 3.0 mm),respectively.Remarkably,the incorporation of Cr element in HE TMC-3 significantly improves the impedance match,thus realizing EAB of 10.5,9.2,and 13.9 GHz at 2,3,and 4 mm,respectively.The significance of this study lays on realizing ultra-broadband capacity in HE TMC-3(Cr,Zr,Hf,Nb,Ta),demonstrating the effectiveness of high-entropy component design in tailoring the impedance match.