The mechanical properties of metal yttrium such as strength, plasticity, hardness and elasticity were introduced . The purifying techniques of yttrium were discussed in detail. The processing methods for metal yttrium...The mechanical properties of metal yttrium such as strength, plasticity, hardness and elasticity were introduced . The purifying techniques of yttrium were discussed in detail. The processing methods for metal yttrium including extruding, forging, rolling, wiredrawing and welding were also introduced. Finally, the potential use of yttrium and its alloys were prospected.展开更多
The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy(TDS) with gas chromatography(GC). The precise nature of the pr...The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy(TDS) with gas chromatography(GC). The precise nature of the precipitate particles newly formed in the weld metal by the addition of Ce and Y to a certain alloy system was characterized. Moreover,the hydrogen trapping efficiency expressed as the reduction of the diffusible hydrogen in the weld metal was analyzed. The results showed that the addition of Ce and/or Y to this alloy system led to the formation of a mixed type of(Ce,Ti)-based oxide,(Y,Ni)-based carbide,or(Ce,Y,Ti)-based oxide particles. Because of the high activation energy of the mixed type of particles(≥ 150 k J/mol),the trapping efficiency for hydrogen was considered to be sufficiently high to effectively reduce the diffusible hydrogen content.展开更多
A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liqu...A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...展开更多
The bulk metallic glassy (BMG) rods of [(Fe0.5Co0.5)0.72B0.192Si0.048Nb0.04]100-xYx (x=0-6) and [(FexCO1-x)0.72B0.192Si0.048Nb0.04]96Y4 (x=0.5-0.8) were prepared by copper mold casting. The structure, therma...The bulk metallic glassy (BMG) rods of [(Fe0.5Co0.5)0.72B0.192Si0.048Nb0.04]100-xYx (x=0-6) and [(FexCO1-x)0.72B0.192Si0.048Nb0.04]96Y4 (x=0.5-0.8) were prepared by copper mold casting. The structure, thermal stability, and magnetic properties of the samples were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and vibrating sample magnetometer (VSM). Adding 1 at% to 6at% of yttrium, the bulk glassy alloy rods of [(Fe0.5Co0.5)0.72B0.192Si0.048Nb0.04]100-xYx (x=0-6) with the diameter of 3 mm were not formed, and the sample with 4at% of yttrium showed less crystalline phase than others. When the Fe/Co atomic ratio was between 5:5 and 7:3, the bulk glassy alloy rods of [(Fe1-xCox)0.72B0.192Si0.048Nb0.04]96Y4 (x=0.5-0.8) with the diameter of 2 mm were fabricated. In the (Fe, Co)-B-Si-Nb-Y BMGs, when the Fe content increased, the thermal stability, the supercooled liquid region, and the glass-forming ability (GFA) decreased, but the saturation magnetization (Ms) increased.展开更多
The microalloying effect of yttrium on the crystallization behaviors of (Zr0.525Al0.10Ti0.05Cu0.179Ni0.146)100-xYx, and (Zr0.55Al0.15- Ni0.10Cu0.20)100-xYx (x=0, 0.4, and 1, thus the two alloy systems were denote...The microalloying effect of yttrium on the crystallization behaviors of (Zr0.525Al0.10Ti0.05Cu0.179Ni0.146)100-xYx, and (Zr0.55Al0.15- Ni0.10Cu0.20)100-xYx (x=0, 0.4, and 1, thus the two alloy systems were denoted as Zr52.5, Zr52.5Y0.4, Zr52.5Y1, and Zr55, Zr55Y0.4, Zr55Y1, respectively) was studied. Transmission electron microscopy (TEM) results suggested that the crystalline phases were different in the two Zr-based alloys and with different yttrium contents. ZrNi-phase and Al3Zr5 phase precipitations can be well explained by the mechanisms of nucleation and growth. Al3Zr5 phase is mainly formed by a peritectic-like reaction, while ZrNi-phase by a eutectic reaction. The contents of elements Y, A1, and Ti may dominate the reaction types. The orientation relationship between Y203 particles and A13Zr5 phase is also discussed.展开更多
It has been demonstrated that sterling silver alloy is a widely used material in the jewelry industry. The anti-tarnish property is one of the most important properties of this material. In this work, the effect of yt...It has been demonstrated that sterling silver alloy is a widely used material in the jewelry industry. The anti-tarnish property is one of the most important properties of this material. In this work, the effect of yttrium on the corrosion resistance, and tarnish resistance properties of sterling silver alloy were investigated with the use of CIE-LAB uniform color scale, which gained acceptance as an effective way to assess color. To better understand the mechanism of the effect, the distribution of yttrium in the alloy was analyzed by mainly segregating in gaps among dendrite crystals and grain boundary. An increase in yttrium content in sterling silver alloy resulted in a decrease in the amount of eutectic structure. The tarnish and corrosion resistance of sterling silver were improved with yttrium content increase. However, too high yttrium content will lead to poor anti-tarnish properties.展开更多
In order to reduce sulphur ( S ) and phosphorus ( P ) impurities in deposited metal, a small amount of rare earth (RE) lanthanum ( La) and yttrium (Y) were added into the coating ofE4303 electrode, a low car...In order to reduce sulphur ( S ) and phosphorus ( P ) impurities in deposited metal, a small amount of rare earth (RE) lanthanum ( La) and yttrium (Y) were added into the coating ofE4303 electrode, a low carbon steel electrode. The microstructures of deposited metal were analyzed with metalloscope, and then the content of S and P was examined by energy dispenive X-ray spectrometer ( EDXS ), and by wavelength dispersive X-ray fluorescence (XRF) spectrometer for further examination. The results show that the proper addition of La and Y can be beneficial to the desulfurization and dephosphorization of the deposited metal. Certainly, difference in the addition amount of La and Y could lead to various desulfurization and dephosphorization efficiency, in which the former is more obvious than the latter. With the proper amount of La attd Y, there is finer microstructure in deposited metal, and mechanical properties are improved as well. The S content in deposited metal with added La and Y decreases by 44. 44 wt. % , while the P content 6. 67 wt. %, compared with that in deposited metal without La and II.展开更多
文摘The mechanical properties of metal yttrium such as strength, plasticity, hardness and elasticity were introduced . The purifying techniques of yttrium were discussed in detail. The processing methods for metal yttrium including extruding, forging, rolling, wiredrawing and welding were also introduced. Finally, the potential use of yttrium and its alloys were prospected.
文摘The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy(TDS) with gas chromatography(GC). The precise nature of the precipitate particles newly formed in the weld metal by the addition of Ce and Y to a certain alloy system was characterized. Moreover,the hydrogen trapping efficiency expressed as the reduction of the diffusible hydrogen in the weld metal was analyzed. The results showed that the addition of Ce and/or Y to this alloy system led to the formation of a mixed type of(Ce,Ti)-based oxide,(Y,Ni)-based carbide,or(Ce,Y,Ti)-based oxide particles. Because of the high activation energy of the mixed type of particles(≥ 150 k J/mol),the trapping efficiency for hydrogen was considered to be sufficiently high to effectively reduce the diffusible hydrogen content.
基金supported by Department of Science and Technology,Government of India (GAP 271526)
文摘A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...
基金supported by the National Natural Science Foundation of China (Nos50771037,50971046)the Doctoral Program Foundation of the Ministry of Education of China (No200805620004)the Natural Science Foundation of Guangdong Province,China (No06021473)
文摘The bulk metallic glassy (BMG) rods of [(Fe0.5Co0.5)0.72B0.192Si0.048Nb0.04]100-xYx (x=0-6) and [(FexCO1-x)0.72B0.192Si0.048Nb0.04]96Y4 (x=0.5-0.8) were prepared by copper mold casting. The structure, thermal stability, and magnetic properties of the samples were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and vibrating sample magnetometer (VSM). Adding 1 at% to 6at% of yttrium, the bulk glassy alloy rods of [(Fe0.5Co0.5)0.72B0.192Si0.048Nb0.04]100-xYx (x=0-6) with the diameter of 3 mm were not formed, and the sample with 4at% of yttrium showed less crystalline phase than others. When the Fe/Co atomic ratio was between 5:5 and 7:3, the bulk glassy alloy rods of [(Fe1-xCox)0.72B0.192Si0.048Nb0.04]96Y4 (x=0.5-0.8) with the diameter of 2 mm were fabricated. In the (Fe, Co)-B-Si-Nb-Y BMGs, when the Fe content increased, the thermal stability, the supercooled liquid region, and the glass-forming ability (GFA) decreased, but the saturation magnetization (Ms) increased.
文摘The microalloying effect of yttrium on the crystallization behaviors of (Zr0.525Al0.10Ti0.05Cu0.179Ni0.146)100-xYx, and (Zr0.55Al0.15- Ni0.10Cu0.20)100-xYx (x=0, 0.4, and 1, thus the two alloy systems were denoted as Zr52.5, Zr52.5Y0.4, Zr52.5Y1, and Zr55, Zr55Y0.4, Zr55Y1, respectively) was studied. Transmission electron microscopy (TEM) results suggested that the crystalline phases were different in the two Zr-based alloys and with different yttrium contents. ZrNi-phase and Al3Zr5 phase precipitations can be well explained by the mechanisms of nucleation and growth. Al3Zr5 phase is mainly formed by a peritectic-like reaction, while ZrNi-phase by a eutectic reaction. The contents of elements Y, A1, and Ti may dominate the reaction types. The orientation relationship between Y203 particles and A13Zr5 phase is also discussed.
基金supported by the National Nature Science Foundation of China (No.51003060)Shenzhen Science & Technology Research (Nos. JC200903130261A, CXB200903090012A)Open Foundation of Shenzhen Key Laboratory of Special Functional Materials (No. T201110)
文摘It has been demonstrated that sterling silver alloy is a widely used material in the jewelry industry. The anti-tarnish property is one of the most important properties of this material. In this work, the effect of yttrium on the corrosion resistance, and tarnish resistance properties of sterling silver alloy were investigated with the use of CIE-LAB uniform color scale, which gained acceptance as an effective way to assess color. To better understand the mechanism of the effect, the distribution of yttrium in the alloy was analyzed by mainly segregating in gaps among dendrite crystals and grain boundary. An increase in yttrium content in sterling silver alloy resulted in a decrease in the amount of eutectic structure. The tarnish and corrosion resistance of sterling silver were improved with yttrium content increase. However, too high yttrium content will lead to poor anti-tarnish properties.
基金This project is supported by National Natural Science Foundation of China ( Grant No. 51305178) Xuzhou City Science and Technology Plan Projects (Grant No. XC12A013).
文摘In order to reduce sulphur ( S ) and phosphorus ( P ) impurities in deposited metal, a small amount of rare earth (RE) lanthanum ( La) and yttrium (Y) were added into the coating ofE4303 electrode, a low carbon steel electrode. The microstructures of deposited metal were analyzed with metalloscope, and then the content of S and P was examined by energy dispenive X-ray spectrometer ( EDXS ), and by wavelength dispersive X-ray fluorescence (XRF) spectrometer for further examination. The results show that the proper addition of La and Y can be beneficial to the desulfurization and dephosphorization of the deposited metal. Certainly, difference in the addition amount of La and Y could lead to various desulfurization and dephosphorization efficiency, in which the former is more obvious than the latter. With the proper amount of La attd Y, there is finer microstructure in deposited metal, and mechanical properties are improved as well. The S content in deposited metal with added La and Y decreases by 44. 44 wt. % , while the P content 6. 67 wt. %, compared with that in deposited metal without La and II.