In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridiniu...In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridinium-4-yl) porphyrin) intercalated into the layer of graphene oxide(GO) by the cooperative effects of electrostatic and π-π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2 D MtTMPyP/rGO_n were fabricated. The as-prepared 2 D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction(ORR) in an alkaline medium. The MtTMPyP/rGO_n hybrids, especially CoTMPyP/rGO_5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries.展开更多
Nanoscale graphene oxide(NGO)sheets were synthesized and used as carbocatalysts for effectiveoxidation of benzylic alcohols and aromatic aldehydes.For oxidation of alcohols in the presence ofH2O2at80°C,the NGOs(2...Nanoscale graphene oxide(NGO)sheets were synthesized and used as carbocatalysts for effectiveoxidation of benzylic alcohols and aromatic aldehydes.For oxidation of alcohols in the presence ofH2O2at80°C,the NGOs(20%mass fraction)as carbocatalysts showed selectivity toward aldehyde.The rate and yield of this reaction strongly depended on the nature of substituents on the alcohol.For4‐nitrobenzyl alcohol,<10%of it was converted into the corresponding carboxylic acid after24h.By contrast,4‐methoxybenzyl alcohol and diphenylmethanol were completely converted into thecorresponding carboxylic acid and ketone after only9and3h,respectively.The conversion ratesfor oxidation of aromatic aldehydes by NGO carbocatalysts were higher than those for alcohol oxidation.For all the aldehydes,complete conversion to the corresponding carboxylic acids wasachieved using7%(mass fraction)of NGO at70°C within2–3h.Possible mechanisms for NGOcarbocatalyst structure‐dependent oxidation of benzyl alcohols and structure‐independent oxidationof aromatic aldehydes are discussed.展开更多
Binuclear iron phthalocyanine/reduced graphene oxide(bi-Fe Pc/RGO) nanocomposite with good electrocatalytic activity for ORR in alkaline medium was prepared in one step. High angle annular dark field image scanning tr...Binuclear iron phthalocyanine/reduced graphene oxide(bi-Fe Pc/RGO) nanocomposite with good electrocatalytic activity for ORR in alkaline medium was prepared in one step. High angle annular dark field image scanning transmission electron microscopy(HAADF-STEM) and energy dispersive X-ray spectroscopy element mapping results show bi-Fe Pc was uniformly distributed on RGO. An obvious cathodic peak located at about-0.23 V(vs. SCE) in CV and an onset potential of-0.004 V(vs. SCE) in LSV indicate the as-prepared bi-Fe Pc/RGO nanocomposite possesses high activity which is closed to Pt/C for ORR. The ORR on bi-Fe Pc/RGO nanocomposite follows four-electron transfer pathway in alkaline medium. Compared with Pt/C, there is only a slight decrease(about 0.02 V vs. SCE) for bi-Fe Pc/RGO nanocomposite when the methanol exists. The excellent activity and methanol tolerance in alkaline solutions proves that bi-Fe Pc/RGO nanocomposite could be considered as a promising cathode catalyst for alkaline fuel cells.展开更多
Hybrid CuO-Co_(3)O_(4)nanosphere building blocks have been embedded between the layered nanosheets of reduced graphene oxides with a three dimensional(3D)hybrid architecture(CuO-Co_(3)O_(4)-RGO),which are successfully...Hybrid CuO-Co_(3)O_(4)nanosphere building blocks have been embedded between the layered nanosheets of reduced graphene oxides with a three dimensional(3D)hybrid architecture(CuO-Co_(3)O_(4)-RGO),which are successfully applied as enhanced anodes for lithium-ion batteries(LIBs).The CuO-Co_(3)O_(4)-RGO sandwiched nanostructures exhibit a reversible capacity of~847 mA·h·g^(-1)after 200 cycles’cycling at 100 mA·g^(-1)with a capacity retention of 79%.The CuO-Co_(3)O_(4)-RGO compounds show superior electrochemical properties than the comparative CuO-Co_(3)O_(4),Co_(3)O_(4)and CuO anodes,which may be ascribed to the following reasons:the hybridizing multicomponent can probably give the complementary advantages;the mutual benefit of uniformly distributing nanospheres across the layered RGO nanosheets can avoid the agglomeration of both the RGO nanosheets and the CuO-Co_(3)O_(4) nanospheres;the 3D storage structure as well as the graphene wrapped composite could enhance the electrical conductivity and reduce volume expansion effect associated with the discharge-charge process.展开更多
This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has ...This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has been presented in four generations according to the catalyst composition and mode of application,viz:single component TMOs(the firstgeneration),doped TMOs/binary TMOs/doped binary TMOs(the second-generation),inactive/active support-immobilized TMOs(the third-generation),and ternary/quaternary compositions(the fourth-generation).The first two generations represent suspended catalysts,the third generation is supported catalysts,and the fourth generation can be suspended or supported.The review provides an elaborated comparison between suspended and supported catalysts,their general/specific requirements,key factors controlling degradation,and the methodologies for performance evaluation.All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated.The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed.Future research trends are also presented.展开更多
The method to increase PtRu utilization and its catalytic activity of PtRu nanoparticles supported on reduced graphene oxide(RGO)by avoiding its restacking was proposed with the aim of developing an active catalyst fo...The method to increase PtRu utilization and its catalytic activity of PtRu nanoparticles supported on reduced graphene oxide(RGO)by avoiding its restacking was proposed with the aim of developing an active catalyst for a direct methanol fuel cell.The heat treatment at 200◦C of the GO aerogel(GOA)prepared by freeze drying of GO ice was introduced to weaken the attractive force of the hydrogen bonding between the GO sheets followed by the composite with the nanoparticles,i.e.,ketjenblack(KB),TiO_(2)and Ti_(4)O_(7),at different weight ratios.The catalyst supported on the heat-treated GOA(RGOA),PtRu/RGOA,improved the PtRu utilization to some extent and also increased the ECSA and mass activity compared to that of PtRu/RGO.RGOA had fewer oxygen functional groups,especially the epoxy groups.Due to the treatment and composite,the PtRu utilization was increased from 66.5%for PtRu/RGO to 128.6%for PtRu/RGOA+Ti_(4)O_(7)(4:1)and the mass activity was improved from 50.7 A/g-PtRu for PtRu/RGO to 130.5 A/g-PtRu for PtRu/RGOA+Ti_(4)O_(7)(1:1).The Ti_(4)O_(7)nanoparticles showed the best catalytic performance for the composite suggesting that the strong interaction between Ti_(4)O_(7)and the Pt nanoparticles was effective due to its high electronic conductivity.展开更多
Herein,a layer of molybdenum oxide(MoO_(x)),a transition metal oxide(TMO),which has outstanding catalytic properties in combination with a carbonbased thin film,is modified to improve the hydrogen production performan...Herein,a layer of molybdenum oxide(MoO_(x)),a transition metal oxide(TMO),which has outstanding catalytic properties in combination with a carbonbased thin film,is modified to improve the hydrogen production performance and protect the MoO_(x)in acidic media.A thin film of graphene is transferred onto the MoO_(x)layer,after which the graphene structure is doped with N and S atoms at room temperature using a plasma doping method to modify the electronic structure and intrinsic properties of the material.The oxygen functional groups in graphene increase the interfacial interactions and electrical contacts between graphene and MoO_(x).The appearance of surface defects such as oxygen vacancies can result in vacancies in MoO_(x).This improves the electrical conductivity and electrochemically accessible surface area.Increasing the number of defects in graphene by adding dopants can significantly affect the chemical reaction at the interfaces and improve the electrochemical performance.These defects in graphene play a crucial role in the adsorption of H^(+)ions on the graphene surface and their transport to the MoO_(x)layer underneath.This enables MoO_(x)to participate in the reaction with the doped graphene.N^(‐)and S^(‐)doped graphene(NSGr)on MoO_(x)is active in acidic media and performs well in terms of hydrogen production.The initial overpotential value of 359 mV for the current density of−10 mA/cm^(2)is lowered to 228 mV after activation.展开更多
In this paper, a series of Fe- and Co-doped lanthanum(hydr)oxides catalysts were prepared by a simple coprecipitationhydrothermal method. The as-prepared catalysts were characterized with various techniques includin...In this paper, a series of Fe- and Co-doped lanthanum(hydr)oxides catalysts were prepared by a simple coprecipitationhydrothermal method. The as-prepared catalysts were characterized with various techniques including powder X-ray diffraction(XRD), N2 adsorption/desorption, inductively coupled plasma(ICP) and transmission electron microscopy(TEM). The Fe-based catalysts exhibited consecutive phase changes of amorphous Fe Ox→FeLaO3→Fe2N under different stages(as-prepared→calcination→ammonia decomposition reaction); as for Co-based catalysts, the phase transformation followed a sequence of Co(OH)2→Co3O4→metallic Co. It was revealed that Fe2N and metallic Co were most probably the active crystalline phase respectively for Feand Co-based catalysts in the decomposition of ammonia.展开更多
Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater. For this investigation of copper-based rare earth composite metal materials, aqueous solutions containing 400...Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater. For this investigation of copper-based rare earth composite metal materials, aqueous solutions containing 400 mg/L of ammonia were oxidized in a batch-bed reac-tor with a catalyst prepared by the co-precipitation of copper nitrate, lanthanum nitrate and cerium nitrate. Barely any of the dissolved ammo-nia was removed by wet oxidation without a catalyst, but about 88% of the ammonia was reduced during wet oxidation over the catalysts at 423 K with an oxygen partial pressure of 4.0 MPa. The catalytic redox behavior was determined by cyclic voltammetry (CV). Furthermore, the catalysts were characterized using thermogravimetric analyzer (TGA) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), which showed that the catalytic behavior was related to the metal oxide properties of the catalyst. In addition, the copper-lanthanum-cerium composite-induced cytotoxicity in the human lung MRC-5 cell line was tested, and the percentage cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-zolium (MTS) analysis in vitro. No ap-parent cytotoxicity was observed when the human lung cells were exposed to the copper-lanthanum-cerium composite.展开更多
NH_(3) in ambient air directly leads to an increase in the aerosol content in the air. These substances lead to the formation of haze to various environmental problems after atmospheric circulation and diffusion. Cont...NH_(3) in ambient air directly leads to an increase in the aerosol content in the air. These substances lead to the formation of haze to various environmental problems after atmospheric circulation and diffusion. Controlling NH_(3) emissions caused by ammonia escaping from mobile and industrial sources can effectively reduce the NH_(3) content in ambient air. Among the various NH_(3) removal methods, the selective catalytic oxygen method (NH_(3)-SCO) is committed to oxidizing NH_(3) to environmentally harmless H_(2)O and N_(2);therefore, it is the most valuable and ideal ammonia removal method. In this review, the characteristics of loaded and core-shell catalysts in NH_(3)-SCO have been reviewed in the context of catalyst structure-activity relationships, and the H_(2)O resistance and SO2 resistance of the catalysts are discussed in the context of practical application conditions. Then the effects of the valence state of the active center, oxygen species on the catalyst surface, dispersion of the active center and acidic sites on the catalyst performance are discussed comprehensively. Finally, the shortcomings of the existing catalysts are summarized and the catalyst development is discussed based on the existing studies.展开更多
Pt-free counter electrode(CE) composed of La2 MoO(LaO-MoO) was successfully synthesized by simple pyrolysis of lanthanum acetate(CHOLa·xHO) and hexaammonium heptamolybdate tetrahydrate((NH4)6 MoO·4 HO). Furt...Pt-free counter electrode(CE) composed of La2 MoO(LaO-MoO) was successfully synthesized by simple pyrolysis of lanthanum acetate(CHOLa·xHO) and hexaammonium heptamolybdate tetrahydrate((NH4)6 MoO·4 HO). Furthermore,three proportions composites catalysts of La2 MoO@MWCNTs based on La2 MoOand multiwall carbon nanotubes(MWCNTs) were prepared and characterized as Ptfree catalyst for CE in dye-sensitized solar cells(DSSCs). The morphology and structure of La2 MoO@MWCNTs composites were determined by scanning electron microscopy, transmission electron microscope and X-ray diffraction. The electrochemical performance of La2 MoO@MWCNTs composite catalysts for CEs was determined by photocurrent-voltage measurements, cyclic voltammetry,electrochemical impedance spectroscopy, and Tafel polarization. The power conversion efficiencies of4.68%, 4.87% and 5.06% are obtained for La2 MoO:MWCNTs with the mass ratios of 5:1, 3:1 and 1:1 towards the reduction of I~-to I~-under the same conditions,respectively,which are superior to those of MWCNTs(3,94%) and La2 MoO(1.71%) electrodes. The experimental results reveal that the presence of MWCNTs results in an augmented active catalytic surface area and enhanced charge transfer from CE to the electrolyte.展开更多
基金supported by Natural Science Fund of Jiangsu Province (BK20141247, BK20140447)Exceptional Talent Project in Jiangsu Province (2015-XCL-035)+3 种基金University Science Research Project of Jiangsu Province (13KJB430005, 11KJA430008)funded by the Priority Academic Program development of Jiangsu Higher Education InstitutionsJiangsu Province universities' "blue and green blue project"financial support from the ARC (CE140100012, FT130100380, and DP170102267)
文摘In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin-MtTMPyP(Mt= Cobalt(Ⅱ), Manganese(Ⅲ), or Iron(Ⅲ); TMPyP = 5, 10, 15, 20-tetrakis(N-methylpyridinium-4-yl) porphyrin) intercalated into the layer of graphene oxide(GO) by the cooperative effects of electrostatic and π-π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2 D MtTMPyP/rGO_n were fabricated. The as-prepared 2 D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction(ORR) in an alkaline medium. The MtTMPyP/rGO_n hybrids, especially CoTMPyP/rGO_5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries.
文摘Nanoscale graphene oxide(NGO)sheets were synthesized and used as carbocatalysts for effectiveoxidation of benzylic alcohols and aromatic aldehydes.For oxidation of alcohols in the presence ofH2O2at80°C,the NGOs(20%mass fraction)as carbocatalysts showed selectivity toward aldehyde.The rate and yield of this reaction strongly depended on the nature of substituents on the alcohol.For4‐nitrobenzyl alcohol,<10%of it was converted into the corresponding carboxylic acid after24h.By contrast,4‐methoxybenzyl alcohol and diphenylmethanol were completely converted into thecorresponding carboxylic acid and ketone after only9and3h,respectively.The conversion ratesfor oxidation of aromatic aldehydes by NGO carbocatalysts were higher than those for alcohol oxidation.For all the aldehydes,complete conversion to the corresponding carboxylic acids wasachieved using7%(mass fraction)of NGO at70°C within2–3h.Possible mechanisms for NGOcarbocatalyst structure‐dependent oxidation of benzyl alcohols and structure‐independent oxidationof aromatic aldehydes are discussed.
基金supported by the National Natural Science Foundation of China (21275014, 21375005)the Excellent Young Scientists Fund of NSFC (21322501)+2 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT& TCD20140309)the Program for New Century Excellent Talents in University (NCET-12-0603)the Beijing Natural Science Foundation Program and Scientific Research Key Program of the Beijing Municipal Commission of Education (KZ201310005001)
文摘Binuclear iron phthalocyanine/reduced graphene oxide(bi-Fe Pc/RGO) nanocomposite with good electrocatalytic activity for ORR in alkaline medium was prepared in one step. High angle annular dark field image scanning transmission electron microscopy(HAADF-STEM) and energy dispersive X-ray spectroscopy element mapping results show bi-Fe Pc was uniformly distributed on RGO. An obvious cathodic peak located at about-0.23 V(vs. SCE) in CV and an onset potential of-0.004 V(vs. SCE) in LSV indicate the as-prepared bi-Fe Pc/RGO nanocomposite possesses high activity which is closed to Pt/C for ORR. The ORR on bi-Fe Pc/RGO nanocomposite follows four-electron transfer pathway in alkaline medium. Compared with Pt/C, there is only a slight decrease(about 0.02 V vs. SCE) for bi-Fe Pc/RGO nanocomposite when the methanol exists. The excellent activity and methanol tolerance in alkaline solutions proves that bi-Fe Pc/RGO nanocomposite could be considered as a promising cathode catalyst for alkaline fuel cells.
基金financially supported by the National Natural Science Foundation of China (21471100, 22005199)the Shenzhen Natural Science Fundation (20200813081943001)the Natural Science Foundation of Guangdong Province,China(2021A1515010241, 2021A1515010142)
文摘Hybrid CuO-Co_(3)O_(4)nanosphere building blocks have been embedded between the layered nanosheets of reduced graphene oxides with a three dimensional(3D)hybrid architecture(CuO-Co_(3)O_(4)-RGO),which are successfully applied as enhanced anodes for lithium-ion batteries(LIBs).The CuO-Co_(3)O_(4)-RGO sandwiched nanostructures exhibit a reversible capacity of~847 mA·h·g^(-1)after 200 cycles’cycling at 100 mA·g^(-1)with a capacity retention of 79%.The CuO-Co_(3)O_(4)-RGO compounds show superior electrochemical properties than the comparative CuO-Co_(3)O_(4),Co_(3)O_(4)and CuO anodes,which may be ascribed to the following reasons:the hybridizing multicomponent can probably give the complementary advantages;the mutual benefit of uniformly distributing nanospheres across the layered RGO nanosheets can avoid the agglomeration of both the RGO nanosheets and the CuO-Co_(3)O_(4) nanospheres;the 3D storage structure as well as the graphene wrapped composite could enhance the electrical conductivity and reduce volume expansion effect associated with the discharge-charge process.
基金supporting us by providing technical facilities(access to journals)。
文摘This review provides insight into the current research trend in transition metal oxides(TMOs)-based photocatalysis in removing the organic colouring matters from water.For easy understanding,the research progress has been presented in four generations according to the catalyst composition and mode of application,viz:single component TMOs(the firstgeneration),doped TMOs/binary TMOs/doped binary TMOs(the second-generation),inactive/active support-immobilized TMOs(the third-generation),and ternary/quaternary compositions(the fourth-generation).The first two generations represent suspended catalysts,the third generation is supported catalysts,and the fourth generation can be suspended or supported.The review provides an elaborated comparison between suspended and supported catalysts,their general/specific requirements,key factors controlling degradation,and the methodologies for performance evaluation.All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated.The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed.Future research trends are also presented.
基金supported by JSPS KAKENHI Grant Number JP18H01772 and 21H01698.
文摘The method to increase PtRu utilization and its catalytic activity of PtRu nanoparticles supported on reduced graphene oxide(RGO)by avoiding its restacking was proposed with the aim of developing an active catalyst for a direct methanol fuel cell.The heat treatment at 200◦C of the GO aerogel(GOA)prepared by freeze drying of GO ice was introduced to weaken the attractive force of the hydrogen bonding between the GO sheets followed by the composite with the nanoparticles,i.e.,ketjenblack(KB),TiO_(2)and Ti_(4)O_(7),at different weight ratios.The catalyst supported on the heat-treated GOA(RGOA),PtRu/RGOA,improved the PtRu utilization to some extent and also increased the ECSA and mass activity compared to that of PtRu/RGO.RGOA had fewer oxygen functional groups,especially the epoxy groups.Due to the treatment and composite,the PtRu utilization was increased from 66.5%for PtRu/RGO to 128.6%for PtRu/RGOA+Ti_(4)O_(7)(4:1)and the mass activity was improved from 50.7 A/g-PtRu for PtRu/RGO to 130.5 A/g-PtRu for PtRu/RGOA+Ti_(4)O_(7)(1:1).The Ti_(4)O_(7)nanoparticles showed the best catalytic performance for the composite suggesting that the strong interaction between Ti_(4)O_(7)and the Pt nanoparticles was effective due to its high electronic conductivity.
基金Korea Institute of Industrial Technology,Grant/Award Number:KITECH EO‐22‐0005National Research Foundation of Korea,Grant/Award Numbers:2022R1A3B1078163,2022R1A4A1031182,2022R1A2C2005701。
文摘Herein,a layer of molybdenum oxide(MoO_(x)),a transition metal oxide(TMO),which has outstanding catalytic properties in combination with a carbonbased thin film,is modified to improve the hydrogen production performance and protect the MoO_(x)in acidic media.A thin film of graphene is transferred onto the MoO_(x)layer,after which the graphene structure is doped with N and S atoms at room temperature using a plasma doping method to modify the electronic structure and intrinsic properties of the material.The oxygen functional groups in graphene increase the interfacial interactions and electrical contacts between graphene and MoO_(x).The appearance of surface defects such as oxygen vacancies can result in vacancies in MoO_(x).This improves the electrical conductivity and electrochemically accessible surface area.Increasing the number of defects in graphene by adding dopants can significantly affect the chemical reaction at the interfaces and improve the electrochemical performance.These defects in graphene play a crucial role in the adsorption of H^(+)ions on the graphene surface and their transport to the MoO_(x)layer underneath.This enables MoO_(x)to participate in the reaction with the doped graphene.N^(‐)and S^(‐)doped graphene(NSGr)on MoO_(x)is active in acidic media and performs well in terms of hydrogen production.The initial overpotential value of 359 mV for the current density of−10 mA/cm^(2)is lowered to 228 mV after activation.
基金Project supported by the National Natural Science Foundation of China(21301107,21501109)Fundamental Research Funding of Shandong University(2014JC005)+1 种基金the Taishan Scholar Project of Shandong Province(China)Doctoral Funding of Ministry of Education of China(20130131120009)
文摘In this paper, a series of Fe- and Co-doped lanthanum(hydr)oxides catalysts were prepared by a simple coprecipitationhydrothermal method. The as-prepared catalysts were characterized with various techniques including powder X-ray diffraction(XRD), N2 adsorption/desorption, inductively coupled plasma(ICP) and transmission electron microscopy(TEM). The Fe-based catalysts exhibited consecutive phase changes of amorphous Fe Ox→FeLaO3→Fe2N under different stages(as-prepared→calcination→ammonia decomposition reaction); as for Co-based catalysts, the phase transformation followed a sequence of Co(OH)2→Co3O4→metallic Co. It was revealed that Fe2N and metallic Co were most probably the active crystalline phase respectively for Feand Co-based catalysts in the decomposition of ammonia.
基金supported by the National Science Council of Taiwan (NSC 98-2221-E-132-003-MY3)
文摘Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater. For this investigation of copper-based rare earth composite metal materials, aqueous solutions containing 400 mg/L of ammonia were oxidized in a batch-bed reac-tor with a catalyst prepared by the co-precipitation of copper nitrate, lanthanum nitrate and cerium nitrate. Barely any of the dissolved ammo-nia was removed by wet oxidation without a catalyst, but about 88% of the ammonia was reduced during wet oxidation over the catalysts at 423 K with an oxygen partial pressure of 4.0 MPa. The catalytic redox behavior was determined by cyclic voltammetry (CV). Furthermore, the catalysts were characterized using thermogravimetric analyzer (TGA) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), which showed that the catalytic behavior was related to the metal oxide properties of the catalyst. In addition, the copper-lanthanum-cerium composite-induced cytotoxicity in the human lung MRC-5 cell line was tested, and the percentage cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-zolium (MTS) analysis in vitro. No ap-parent cytotoxicity was observed when the human lung cells were exposed to the copper-lanthanum-cerium composite.
基金the National Natural Science Foundation of China(No.52000093)Yunnan Fundamental Research Projects(No.202101BE070001-001)National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2019B03).
文摘NH_(3) in ambient air directly leads to an increase in the aerosol content in the air. These substances lead to the formation of haze to various environmental problems after atmospheric circulation and diffusion. Controlling NH_(3) emissions caused by ammonia escaping from mobile and industrial sources can effectively reduce the NH_(3) content in ambient air. Among the various NH_(3) removal methods, the selective catalytic oxygen method (NH_(3)-SCO) is committed to oxidizing NH_(3) to environmentally harmless H_(2)O and N_(2);therefore, it is the most valuable and ideal ammonia removal method. In this review, the characteristics of loaded and core-shell catalysts in NH_(3)-SCO have been reviewed in the context of catalyst structure-activity relationships, and the H_(2)O resistance and SO2 resistance of the catalysts are discussed in the context of practical application conditions. Then the effects of the valence state of the active center, oxygen species on the catalyst surface, dispersion of the active center and acidic sites on the catalyst performance are discussed comprehensively. Finally, the shortcomings of the existing catalysts are summarized and the catalyst development is discussed based on the existing studies.
基金Project supported by the National Natural Science Foundation of China(21473048 and 21303039)the Natural Science Foundation of Hebei Province(B2015205163,B2016205161)the 2015 Hebei Province Undergraduate Training Programs for Innovation and Entrepreneurship
文摘Pt-free counter electrode(CE) composed of La2 MoO(LaO-MoO) was successfully synthesized by simple pyrolysis of lanthanum acetate(CHOLa·xHO) and hexaammonium heptamolybdate tetrahydrate((NH4)6 MoO·4 HO). Furthermore,three proportions composites catalysts of La2 MoO@MWCNTs based on La2 MoOand multiwall carbon nanotubes(MWCNTs) were prepared and characterized as Ptfree catalyst for CE in dye-sensitized solar cells(DSSCs). The morphology and structure of La2 MoO@MWCNTs composites were determined by scanning electron microscopy, transmission electron microscope and X-ray diffraction. The electrochemical performance of La2 MoO@MWCNTs composite catalysts for CEs was determined by photocurrent-voltage measurements, cyclic voltammetry,electrochemical impedance spectroscopy, and Tafel polarization. The power conversion efficiencies of4.68%, 4.87% and 5.06% are obtained for La2 MoO:MWCNTs with the mass ratios of 5:1, 3:1 and 1:1 towards the reduction of I~-to I~-under the same conditions,respectively,which are superior to those of MWCNTs(3,94%) and La2 MoO(1.71%) electrodes. The experimental results reveal that the presence of MWCNTs results in an augmented active catalytic surface area and enhanced charge transfer from CE to the electrolyte.