期刊文献+
共找到1,297篇文章
< 1 2 65 >
每页显示 20 50 100
Advances in noble metal-modified g-C_(3)N_(4) heterostructures toward enhanced photocatalytic redox ability
1
作者 Xiao Zhang Ping Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2368-2389,共22页
The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-base... The photocatalytic activity of catalysts depends on the energy-harvesting ability and the separation or transport of photogenerated carriers.The light absorption capacity of graphitic carbon nitride(g-C_(3)N_(4))-based composites can be enhanced by adjusting the surface plasmon resonance(SPR)of noble metal nanoparticles(e.g.,Cu,Au,and Pd)in the entire visible region.Adjustments can be carried out by varying the nanocomponents of the materials.The SPR of noble metals can enhance the local electromagnetic field and improve interband transition,and resonant energy transfer occurs from plasmonic dipoles to electron-hole pairs via near-field electromagnetic interactions.Thus,noble metals have emerged as relevant nanocomponents for g-C_(3)N_(4) used in CO_(2) photoreduction and water splitting.Herein,recent key advances in noble metals(either in single atom,cluster,or nanoparticle forms)and composite photocatalysts based on inorganic or organic nanocomponent-incorporated g-C_(3)N_(4) nanosheets are systematically discussed,including the applications of these photocatalysts,which exhibit improved photoinduced charge mobility in CO_(2) photoconversion and H2 production.Issues related to the different types of multi-nanocomponent heterostructures(involving Schottky junctions,Z-/S-scheme heterostructures,noble metals,and additional semiconductor nanocomponents)and the adjustment of dimensionality of heterostructures(by incorporating noble metal nanoplates on g-C_(3)N_(4) forming 2D/2D heterostructures)are explored.The current prospects and possible challenges of g-C_(3)N_(4) composite photocatalysts incorporated with noble metals(e.g.,Au,Pt,Pd,and Cu),particularly in water splitting,CO_(2) reduction,pollution degradation,and chemical conversion applications,are summarized. 展开更多
关键词 g-C_(3)N_(4) heterostructure noble metal PHOTOCATALYSIS H_(2)generation CO_(2)
下载PDF
Atomic layer deposition to heterostructures for application in gas sensors 被引量:3
2
作者 Hongyin Pan Lihao Zhou +3 位作者 Wei Zheng Xianghong Liu Jun Zhang Nicola Pinna 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期171-188,共18页
Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semicondu... Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semiconductor(MOS) heterostructures for gas sensing applications in which at least one of the preparation steps is carried out by ALD. In particular, three types of MOS-based heterostructures synthesized by ALD are discussed, including ALD of metal catalysts on MOS, ALD of metal oxides on MOS and MOS core–shell(C–S) heterostructures.The gas sensing performances of these heterostructures are carefully analyzed and discussed.Finally, the further developments required and the challenges faced by ALD for the synthesis of MOS gas sensing materials are discussed. 展开更多
关键词 atomic layer deposition metal oxides heterostructureS gas sensors
下载PDF
Built‑In Electric Field‑Driven Ultrahigh‑Rate K‑Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti_(3)C_(2)T_(x)MXene 被引量:1
3
作者 Long Pan Rongxiang Hu +7 位作者 Yuan Zhang Dawei Sha Xin Cao Zhuoran Li Yonggui Zhao Jiangxiang Ding Yaping Wang ZhengMing Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期127-140,共14页
Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct th... Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct the dual transition metal tellurides(CoTe_(2)/ZnTe),which are anchored onto two-dimensional(2D)Ti_(3)C_(2)T_(x)MXene nanosheets.Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe_(2)/ZnTe interfaces,improving K+diffusion and adsorption.In addition,the different work functions between CoTe_(2)/ZnTe induce a robust built-in electric field at the CoTe_(2)/ZnTe interface,providing a strong driving force to facilitate charge transport.Moreover,the conductive and elastic Ti_(3)C_(2)T_(x)can effectively promote electrode conductivity and alleviate the volume change of CoTe_(2)/ZnTe heterostructures upon cycling.Owing to these merits,the resulting CoTe_(2)/ZnTe/Ti_(3)C_(2)T_(x)(CZT)exhibit excellent rate capability(137.0 mAh g^(-1)at 10 A g^(-1))and cycling stability(175.3 mAh g^(-1)after 4000 cycles at 3.0 A g^(-1),with a high capacity retention of 89.4%).More impressively,the CZT-based full cells demonstrate high energy density(220.2 Wh kg^(-1))and power density(837.2 W kg^(-1)).This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs. 展开更多
关键词 Transition metal tellurides heterostructureS Built-in electric field Potassium-ion batteries Anode material
下载PDF
A study of highly activated hydrogen evolution reaction performance in acidic media by 2D heterostructure of N and S doped graphene on MoO_(x)
4
作者 Kubra Aydin Seongwon Woo +4 位作者 Vinit Kaluram Kanade Seulgi Choi Chisung Ahn Byungkwon Lim Taesung Kim 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期68-80,共13页
Herein,a layer of molybdenum oxide(MoO_(x)),a transition metal oxide(TMO),which has outstanding catalytic properties in combination with a carbonbased thin film,is modified to improve the hydrogen production performan... Herein,a layer of molybdenum oxide(MoO_(x)),a transition metal oxide(TMO),which has outstanding catalytic properties in combination with a carbonbased thin film,is modified to improve the hydrogen production performance and protect the MoO_(x)in acidic media.A thin film of graphene is transferred onto the MoO_(x)layer,after which the graphene structure is doped with N and S atoms at room temperature using a plasma doping method to modify the electronic structure and intrinsic properties of the material.The oxygen functional groups in graphene increase the interfacial interactions and electrical contacts between graphene and MoO_(x).The appearance of surface defects such as oxygen vacancies can result in vacancies in MoO_(x).This improves the electrical conductivity and electrochemically accessible surface area.Increasing the number of defects in graphene by adding dopants can significantly affect the chemical reaction at the interfaces and improve the electrochemical performance.These defects in graphene play a crucial role in the adsorption of H^(+)ions on the graphene surface and their transport to the MoO_(x)layer underneath.This enables MoO_(x)to participate in the reaction with the doped graphene.N^(‐)and S^(‐)doped graphene(NSGr)on MoO_(x)is active in acidic media and performs well in terms of hydrogen production.The initial overpotential value of 359 mV for the current density of−10 mA/cm^(2)is lowered to 228 mV after activation. 展开更多
关键词 heteroatom‐doped graphene hydrogen evolution reactions metal‐free catalysts transition metal oxides van der Waals(vdWs)heterostructures
下载PDF
Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage 被引量:8
5
作者 Junming Cao Junzhi Li +5 位作者 Dongdong Li Zeyu Yuan Yuming Zhang Valerii Shulga Ziqi Sun Wei Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期153-172,共20页
Combining with the advantages of two-dimensional(2D)nanomaterials,MXenes have shown great potential in next generation rechargeable batteries.Similar with other 2D materials,MXenes generally suffer severe self-agglome... Combining with the advantages of two-dimensional(2D)nanomaterials,MXenes have shown great potential in next generation rechargeable batteries.Similar with other 2D materials,MXenes generally suffer severe self-agglomeration,low capacity,and unsatisfied durability,particularly for larger sodium/potassium ions,compromising their practical values.In this work,a novel ternary heterostructure self-assembled from transition metal selenides(MSe,M=Cu,Ni,and Co),MXene nanosheets and N-rich carbonaceous nanoribbons(CNRibs)with ultrafast ion transport properties is designed for sluggish sodium-ion(SIB)and potassium-ion(PIB)batteries.Benefiting from the diverse chemical characteristics,the positively charged MSe anchored onto the electronegative hydroxy(-OH)functionalized MXene surfaces through electrostatic adsorption,while the fungal-derived CNRibs bonded with the other side of MXene through amino bridging and hydrogen bonds.This unique MXene-based heterostructure prevents the restacking of 2D materials,increases the intrinsic conductivity,and most importantly,provides ultrafast interfacial ion transport pathways and extra surficial and interfacial storage sites,and thus,boosts the high-rate storage performances in SIB and PIB applications.Both the quantitatively kinetic analysis and the density functional theory(DFT)calculations revealed that the interfacial ion transport is several orders higher than that of the pristine MXenes,which delivered much enhanced Na+(536.3 mAh g^(−1)@0.1 A g^(−1))and K^(+)(305.6 mAh g^(−1)@1.0 A g^(−1))storage capabilities and excel-lent long-term cycling stability.Therefore,this work provides new insights into 2D materials engineering and low-cost,but kinetically sluggish post-Li batteries. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene heterostructure Transition metal chalcogenide Sodium and potassium-ions batteries DFT calculation
下载PDF
2D metal‐free heterostructure of covalent triazine framework/g‐C_(3)N_(4) for enhanced photocatalytic CO_(2) reduction with high selectivity 被引量:3
6
作者 Jie He Xuandong Wang +2 位作者 Shangbin Jin Zhao‐Qing Liu Mingshan Zhu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1306-1315,共10页
Solar‐driven CO_(2)conversion to precious fossil fuels has been proved to become a potential way to decrease CO_(2)with producing renewable fuels,which mainly relies on photocatalysts with efficient charge separation... Solar‐driven CO_(2)conversion to precious fossil fuels has been proved to become a potential way to decrease CO_(2)with producing renewable fuels,which mainly relies on photocatalysts with efficient charge separation.In this work,a metal free heterostructure of covalent triazine framework(CTF)and graphite carbon nitride(g‐C_(3)N_(4),abbreviated as CN)is applied in the CO_(2)photoreduction for the first time.Detailed characterization methods such as photoluminescence(PL)and time‐resolved PL(TR‐PL)decay are utilized to reveal the photo‐induced carries separating process on g‐C_(3)N_(4)/CTF(CN/CTF)heterostructure.The introduced CTF demonstrated a great boosting photocatalytic activity for CN,bringing about the transform rates of CO_(2)to CO reaching 151.1μmol/(g·h)with a 30 h stabilization time,while negligible CH_(4)was detected.The optimal CN/CTF heterostructure could more efficiently separate charges with a lower probability of recombination under visible light irradiation,which made the photoreduction efficiency of CO_(2)to CO be 25.5 and 2.5 times higher than that of CTF and CN,respectively.This investigation is expected to offer a new thought for fabricating high‐efficiency photocatalyst without metal in solar‐energy‐driven CO_(2)reduction. 展开更多
关键词 CO_(2)reduction Covalent triazine framework Graphite carbon nitride metal‐free heterostructure Photocatalysis
下载PDF
Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives 被引量:3
7
作者 Ahmed Elbanna Ksenia Chaykun +6 位作者 Yulia Lekina Yuanda Liu Benny Febriansyah Shuzhou Li Jisheng Pan Ze Xiang Shen Jinghua Teng 《Opto-Electronic Science》 2022年第8期1-40,共40页
Transition metal dichalcogenides(TMDs)and perovskites are among the most attractive and widely investigated semiconductors in the recent decade.They are promising materials for various applications,such as photodetect... Transition metal dichalcogenides(TMDs)and perovskites are among the most attractive and widely investigated semiconductors in the recent decade.They are promising materials for various applications,such as photodetection,solar energy harvesting,light emission,and many others.Combining these materials to form heterostructures can enrich the already fascinating properties and bring up new phenomena and opportunities.Work in this field is growing rapidly in both fundamental studies and device applications.Here,we review the recent findings in the perovskite-TMD heterostructures and give our perspectives on the future development of this promising field.The fundamental properties of the perovskites,TMDs,and their heterostructures are discussed first,followed by a summary of the synthesis methods of the perovskites and TMDs and the approaches to obtain high-quality interfaces.Particular attention is paid to the TMD-perovskite heterostructures that have been applied in solar cells and photodetectors with notable performance improvement.Finally through our analysis,we propose an outline on further fundamental studies and the promising applications of perovskite-TMD heterostructures. 展开更多
关键词 transition metal dichalcogenides perovskites heterostructureS PHOTODETECTORS solar cells 2D materials
下载PDF
Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature 被引量:1
8
作者 李柳暗 张家琦 +1 位作者 刘扬 敖金平 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期445-447,共3页
In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process... In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 ℃ with the contact resistance approximately 1.6 Ω.mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/A1Ox gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AIGaN/GaN MOS-HFETs. 展开更多
关键词 metal-oxide-semiconductor heterostructure field-effect transistors low temperature ohmic pro-cess inductively coupled plasma
下载PDF
Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition
9
作者 张雅超 周小伟 +6 位作者 许晟瑞 陈大正 王之哲 汪星 张金风 张进成 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期796-801,共6页
Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy... Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. 展开更多
关键词 heterostructure InGaN channel pulsed metal organic chemical vapor deposition
下载PDF
Design and in-situ construct BiOI/Bi/TiO_(2)photocatalysts with metal-mediated heterostructures employing oxygen vacancies in TiO_(2)nanosheets
10
作者 Chenchen Zhang Wenbin Chen +6 位作者 Dairong Hu Hanjie Xie Yibing Song Binbin Luo Yiwen Fang Wenhua Gao Ziyi Zhong 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期680-690,共11页
The conventional p-n heterojunction photocatalysts suffer from the incompatibility between the interfacial charge transfer efficiency and the redox ability of charge carriers.To optimize the interfacial charge transfe... The conventional p-n heterojunction photocatalysts suffer from the incompatibility between the interfacial charge transfer efficiency and the redox ability of charge carriers.To optimize the interfacial charge transfer of the conventional BiOI/TiO_(2) p-n photocatalyst,we synthesized the BiOI/Bi/TiO_(2) ternary photocatalyst with sandwiched metallic bismuth(Bi~0)by the oxygen-vacancy assisted method.The DFT calculation and structural characterizations confirmed the reaction of the electron-rich oxygen vacancies in the 2D-TiO_(2) nanosheets(TiO_(2)-NS)with the adsorbed BiO~+species.This reaction broke the Bi-O bonds to form Bi^(0) nanoparticles in-situ at the interface but still maintained the p-n heterojunction well.The NO-TPD and XRD analyses for samples correlated the Bi~0 formation with the oxygen vacancy concentrations well.The sandwiched Bi~0 functioned as an electronic transfer mediator like that in the Z-scheme heterostructure.Comparing with 0.20 BiOI/TiO_(2)-NP(NP,Nanoparticles),0.20 BiOI/Bi/TiO_(2)-NS-a(NS,Nanosheet)showed a much improved catalytic performance,i.e.,duplicated apparent quantum yield(AQY)and triplicated reaction rate constant(k).Also,the formation mechanism and the reaction mechanism were investigated in detail.This work provides a new strategy for the improving of the conventional p-n photocatalysts and new insights into the nature of the photocatalysis. 展开更多
关键词 TiO_(2)nanosheets Oxygen vacancy metallic bismuth Sandwiched heterostructure Photocatalysis
下载PDF
Effect of surface roughness on plasticity of Zr_(52.5)Cu_(17.9)Ni_(14.6)Al_(10)Ti_5 bulk metallic glass 被引量:2
11
作者 林涛 胡勇 +1 位作者 孔令体 李金富 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1407-1411,共5页
Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) rods were abraded to different surface roughnesses using different types of waterproof abrasive papers and sometimes polishing pastes, and the compressive deformat... Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) rods were abraded to different surface roughnesses using different types of waterproof abrasive papers and sometimes polishing pastes, and the compressive deformation behavior was examined. The results show that the yield strength of the BMG is hardly affected while the compressive plasticity increases from 2.3% to 4.5% with decreasing the surface roughness. Observation of the fractured samples under a scanning electron microscope indicates that the rise in plasticity is accompanied with an increase in shear band density. The results suggest that it is necessary to reduce the surface roughness of BMGs for achieving a large plasticity. 展开更多
关键词 bulk metallic glass surface roughness compressive plasticity stress concentration
下载PDF
Transition of plasticity and fracture mode of Zr-Al-Ni-Cu bulk metallic glasses with network structures 被引量:1
12
作者 蔡安辉 丁大伟 +4 位作者 安伟科 周果君 罗云 李江鸿 彭勇宜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2617-2623,共7页
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch... Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed. 展开更多
关键词 bulk metallic glass plasticITY fracture mode network structure
下载PDF
Theoretical study on magnetocaloric effect and its electric-field regulation in CrI_(3)/metal heterostructure
13
作者 Weiwei He Ziming Tang +2 位作者 Qihua Gong Min Yi Wanlin Guo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第2期134-141,共8页
The extraordinary properties of a heterostructure by stacking atom-thick van der Waals(vdW)magnets have been extensively studied.However,the magnetocaloric effect(MCE)of heterostructures that are based on monolayer ma... The extraordinary properties of a heterostructure by stacking atom-thick van der Waals(vdW)magnets have been extensively studied.However,the magnetocaloric effect(MCE)of heterostructures that are based on monolayer magnets remains to be explored.Herein,we deliberate MCE of vd W heterostructure composed of a monolayer CrI_(3)and metal atomic layers(Ag,Hf,Au,and Pb).It is revealed that heterostructure engineering by introducing metal substrate can improve MCE of CrI_(3),particularly boosting relative cooling power to 471.72μJ m^(-2)and adiabatic temperature change to 2.1 K at 5 T for CrI_(3)/Hf.This improved MCE is ascribed to the enhancement of magnetic moment and intralayer exchange coupling in CrI_(3)due to the CrI_(3)/metal heterointerface induced charge transfer.Electric field is further found to tune MCE of CrI_(3)in heterostructures and could shift the peak temperature by around 10 K in CrI_(3)/Hf,thus manipulating the working temperature window of MCE.These theoretical results could enrich the research on low-dimensional magnetocaloric materials. 展开更多
关键词 magnetocaloric effect heterostructure metal substrate
原文传递
Excitonic devices based on two-dimensional transition metal dichalcogenides van der Waals heterostructures
14
作者 Yulun Liu Yaojie Zhu +6 位作者 Zuowei Yan Ruixue Bai Xilin Zhang Yanbo Ren Xiaoyu Cheng Hui Ma Chongyun Jiang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第2期41-67,共27页
Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides of... Excitonic devices are an emerging class of technology that utilizes excitons as carriers for encoding, transmitting, and storing information. Van der Waals heterostructures based on transition metal dichalcogenides often exhibit a type II band alignment, which facilitates the generation of interlayer excitons. As a bonded pair of electrons and holes in the separation layer, interlayer excitons offer the chance to investigate exciton transport due to their intrinsic out-of-plane dipole moment and extended exciton lifetime. Furthermore, interlayer excitons can potentially analyze other encoding strategies for information processing beyond the conventional utilization of spin and charge. The review provided valuable insights and recommendations for researchers studying interlayer excitonic devices within van der Waals heterostructures based on transition metal dichalcogenides. Firstly, we provide an overview of the essential attributes of transition metal dichalcogenide materials, focusing on their fundamental properties, excitonic effects, and the distinctive features exhibited by interlayer excitons in van der Waals heterostructures. Subsequently, this discourse emphasizes the recent advancements in interlayer excitonic devices founded on van der Waals heterostructures, with specific attention is given to the utilization of valley electronics for information processing, employing the valley index. In conclusion, this paper examines the potential and current challenges associated with excitonic devices. 展开更多
关键词 excitonic devices van der Waals heterostructures transition metal dichalcogenides interlayer excitons valley-Hall effect OPTOELECTRONICS
原文传递
Randomized trial in malignant biliary obstruction:Plastic vs partially covered metal stents 被引量:7
15
作者 Peter L Moses Khalid M AlNaamani +6 位作者 Alan N Barkun Stuart R Gordon Roger D Mitty M Stanley Branch Thomas E Kowalski Myriam Martel Viviane Adam 《World Journal of Gastroenterology》 SCIE CAS 2013年第46期8638-8646,共9页
AIM:To compare efficacy and complications of par-tially covered self-expandable metal stent(pcSEMS)to plastic stent(PS)in patients treated for malignant,infrahilar biliary obstruction.METHODS:Multicenter prospective r... AIM:To compare efficacy and complications of par-tially covered self-expandable metal stent(pcSEMS)to plastic stent(PS)in patients treated for malignant,infrahilar biliary obstruction.METHODS:Multicenter prospective randomized clinical trial with treatment allocation to a pcWallstent(SEMS)or a 10 French PS.Palliative patients aged≥18,for infrahilar malignant biliary obstruction and a Karnofsky performance scale index>60%from 6 participating North American university centers.Primary endpoint was time to stent failure,with secondary outcomes of death,adverse events,Karnofsky performance score and short-form-36 scale administered on a three-monthly basis for up to 2 years.Survival analyses were performed for stent failure and death,with Cox proportional hazards regression models to determine significant predictive characteristics.RESULTS:Eighty-five patients were accrued over 37mo,42 were randomized to the SEMS group and 83patients were available for analyses.Time to stent failure was 385.3±52.5 d in the SEMS and 153.3±19.8 d in the PS group,P=0.006.Time to death did not differ between groups(192.3±23.4 d for SEMS vs211.5±28.0 d for PS,P=0.70).The only significant predictor was treatment allocation,relating to the time to stent failure(P=0.01).Amongst other measured outcomes,only cholangitis differed,being more common in the PS group(4.9%vs 24.5%,P=0.029).The small number of patients in follow-up limits longitudinal assessments of performance and quality of life.From an initially planned 120 patients,only 85 patients were recruited.CONCLUSION:Partially covered SEMS result in a longer duration till stent failure without increased complication rates,yet without accompanying measurable benefits in survival,performance,or quality of life. 展开更多
关键词 Randomized BILIARY OBSTRUCTION STENT plastic metal PALLIATIVE Common BILE duct
下载PDF
Interlayer exciton dynamics of transition metal dichalcogenide heterostructures under electric fields
16
作者 Jian Tang Yue Zheng +7 位作者 Ke Jiang Qi You Zhentian Yin Zihao Xie Henan Li Cheng Han Xiaoxian Zhang Yumeng Shi 《Nano Research》 SCIE EI CSCD 2024年第5期4555-4572,共18页
Stacking single layers of atoms on top of each other provides a fundamental way to achieve novel material systems and engineer their physical properties,which offers opportunities for exploring fundamental physics and... Stacking single layers of atoms on top of each other provides a fundamental way to achieve novel material systems and engineer their physical properties,which offers opportunities for exploring fundamental physics and realizing next-generation optoelectronic devices.Among the two-dimensional(2D)-stacked systems,transition metal dichalcogenide(TMDC)heterostructures are particularly attractive because they host tightly-bonded interlayer excitons which possess various novel and appealing properties.These interlayer excitons have drawn significant research attention and hold high potential for the application in unique optoelectronic devices,such as polarization-and wavelength-tunable single photon emitters,valley Hall transistors,and possible high-temperature superconductors.The development of these devices requires a comprehensive understanding of the fundamental properties of these interlayer excitons and the impact of electric fields on their behaviors.In this review,we summarize the recent advances on the understanding of interlayer exciton dynamics under electric fields in TMDC heterostructures.We put emphasis on the electrical modulation of interlayer excitons’emission,the valley Hall transport of charge carriers after the separation of interlayer excitons by an electric field,and the correlation physics of interlayer excitons and charges under electrical doping and tuning.Challenges and perspectives are finally discussed for the application of TMDC heterostructures in future optoelectronics. 展开更多
关键词 interlayer exciton transition metal dichalcogenide(TMDC)heterostructures circular polarization valley Hall effect strong coupling
原文传递
Rational design of three-dimensional branched NiCo-P@CoNiMo-P core/shell nanowire heterostructures for high-performance hybrid supercapacitor 被引量:4
17
作者 Yijing Huang Chong Luo +2 位作者 Qiaobao Zhang Hehe Zhang Ming-Sheng Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期489-496,I0013,共9页
Owing to the dramatically enhanced charge-mass transport and abundant electrochemically active sites,transition metal compound electrodes are increasingly attractive for achieving high-performance supercapacitors(SCs)... Owing to the dramatically enhanced charge-mass transport and abundant electrochemically active sites,transition metal compound electrodes are increasingly attractive for achieving high-performance supercapacitors(SCs).Here,we report the fabrication of nickel foam supported three-dimensional(3 D)branched nickel-cobalt phosphides@tri-metal cobalt-nickel-molybdenum phosphides core/shell nanowire heterostructures(denoted as NiCo-P@CoNiMo-P)as high-performance electrode materials for hybrid supercapacitors.The presence of multiple valences of the cations in such NiCo-P@CoNiMo-P enables rich redox reactions and promoted synergy effects.Benefiting from their collective effects,the resulting electrode demonstrates high specific capacity of 1366 C g^(-1) at 2 A g^(-1)(2.03 C cm^(-2) at2 mA cm^(-2))and 922 C g^(-1) at 10 A g^(-1),as well as good cycling stability(retaining~94%of the initial capacity after 6000 cycles at 15 A g^(-1)).A hybrid SC using the NiCo-P@CoNiMo-P as the positive electrode and N-doped rGOs as the negative electrode exhibits a high energy density of 81.4 Wh kg^(-1) at a power density of 1213 W kg^(-1) and a capacity retention of 132%even after 6000 cycles at 10 A g^(-1).Our findings can facilitate the material design for boosting the performance of transition metal compounds based materials for fast energy storage. 展开更多
关键词 Transition metal phosphides Branched nanowire heterostructures Electrode materials Hybird supercapacitors
下载PDF
Visible-to-near-infrared photodetector based on graphene–MoTe2–graphene heterostructure 被引量:1
18
作者 Rui-Xue Hu Xin-Li Ma +1 位作者 Chun-Ha An Jing Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第11期354-359,共6页
Graphene and transition metal dichalcogenides(TMDs), two-dimensional materials, have been investigated wildely in recent years. As a member of the TMD family, MoTe2 possesses a suitable bandgap of ~1.0 eV for near inf... Graphene and transition metal dichalcogenides(TMDs), two-dimensional materials, have been investigated wildely in recent years. As a member of the TMD family, MoTe2 possesses a suitable bandgap of ~1.0 eV for near infrared(NIR)photodetection. Here we stack the MoTe2 flake with two graphene flakes of high carrier mobility to form a graphene–MoTe2–graphene heterostructure. It exhibits high photo-response to a broad spectrum range from 500 nm to 1300 nm. The photoresponsivity is calculated to be 1.6 A/W for the 750-nm light under 2 V/0 V drain–source/gate bias, and 154 mA/W for the 1100-nm light under 0.5 V/60 V drain–source/gate bias. Besides, the polarity of the photocurrent under zero Vds can be efficiently tuned by the back gate voltage to satisfy different applications. Finally, we fabricate a vertical graphene–MoTe2–graphene heterostructure which shows improved photoresponsivity of 3.3 A/W to visible light. 展开更多
关键词 two-dimensional materials van der WAALS heterostructure transition metal dichalcogenides(TMDs) GRAPHENE PHOTODETECTOR
下载PDF
Ultralong cycle life enabled by in situ growth of CoMo_(1-x)P/Mo heterostructure for lithium-sulfur batteries 被引量:2
19
作者 Donghua Guo Mengwei Yuan +5 位作者 Xingzi Zheng Miaomiao Li Caiyun Nan Genban Sun Xianqiang Huang Huifeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期5-12,I0001,共9页
Lithium-sulfur batteries(Li-S batteries) are considered as promising new-generation electrochemical energy storage devices due to their extremely high theoretical energy density(2600 Wh kg-1) and theoretical specific ... Lithium-sulfur batteries(Li-S batteries) are considered as promising new-generation electrochemical energy storage devices due to their extremely high theoretical energy density(2600 Wh kg-1) and theoretical specific capacity(1675 m Ah g^(-1)). However, numerous problems such as poor conductivity and the shuttle effect during discharge-charge process limit the practical application of lithium-sulfur batteries. In this work, porous tubular Co Mo_(1-x)P/Mo constructed by in situ growth of metal Mo was designed as the sulfur host for lithium-sulfur batteries. The introduction of Mo modulated the electronic structure of Co Mo P to improve the conductivity of cathode and facilitate the redox kinetics, as well as the Co Mo_(1-x)P/Mo heterostructure was beneficial to inhibit the shuttle effect through the interaction with lithium polysulfides, which improved cycling stability. As a result, Co Mo_(1-x)P/Mo/S cathode had a low-capacity decay rate of only 0.029% per cycle after 2000 cycles at 0.5 C. This work provided a new perspective for the further design of high-performance lithium-sulfur battery cathode materials. 展开更多
关键词 metal phosphide heterostructure Long cycle Shuttle effect Li-S batteries
下载PDF
Mg-Cu-Zn-Y-Zr bulk metallic glassy composite with high strength and plasticity 被引量:1
20
作者 Wei Tian, Shujie Pang, Hua Men, Chaoli Ma, and Tao Zhang Department of Materials Science and Engineering, Beihang University, Beijing 100083, China 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2007年第S1期43-45,共3页
Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a... Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a size of about 20 μm long and 1 μm thick while the remaining melt undergoes glass transition. Room temperature compression tests revealed that the high fracture strength up to 830 MPa and the plastic strain of 2.4% before failure are obtained for the Mg-based bulk metallic glass matrix composite. The formation of the Mg2Cu phase was proposed to contribute to high strength and plastic deformation of the material. 展开更多
关键词 Mg-based alloy metallic glass matrix composite acicular crystalline phase strength plasticITY
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部