Objective:To determine the distribution,phenotypic and genetic background of extended spectrumβ-lactamases(ESBL)-producing Klebsiella(K.)pneumoniae clinical isolates associated with K1 and K2 serotypes in two selecte...Objective:To determine the distribution,phenotypic and genetic background of extended spectrumβ-lactamases(ESBL)-producing Klebsiella(K.)pneumoniae clinical isolates associated with K1 and K2 serotypes in two selected hospitals in Malaysia.Methods:A total of 192 K.pneumoniae isolates were collected and subjected to antibiotic susceptibility,hypermucoviscosity test and multiplex PCR to detect the presence of K1-and K2-serotype associated genes.Multilocus sequence typing(MLST)was performed on ESBL-producing K.pneumoniae isolates presented with K1 and K2 serotypes,followed by phylogenetic analysis.Results:A total of 87 out of 192(45.3%)of the K.pneumoniae isolates collected were ESBL producers.However,only 8.3%(16/192)and 10.9%(21/192)of the total isolates were detected to carry K1-and K2-serotype associated genes,respectively.Statistical analysis showed that K1 and K2 capsular serotypes were not significantly associated with ESBL phenotype(P=0.196).However,they were significantly associated with hypervirulent,as demonstrated by the positive string test(P<0.001).MLST analysis revealed that ST23 as the predominant sequence type(ST)in the K1 serotype,while the ST in the K2 serotype is more diverse.Conclusions:Although the occurrence of ESBL-producing isolates among the hypervirulent strains was low,their coexistence warrants the need for continuous surveillance.MLST showed that these isolates were genetically heterogeneous.展开更多
Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomi...Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.展开更多
Antibiotic resistance is one of the most significant challenges facing global healthcare. Since the 1940s, antibiotics have been used to fight infections, initially with penicillin and subsequently with various deriva...Antibiotic resistance is one of the most significant challenges facing global healthcare. Since the 1940s, antibiotics have been used to fight infections, initially with penicillin and subsequently with various derivatives including cephalosporins, carbapenams and monobactams. A common characteristic of these antibiotics is the four-memberedβ-lactam ring. Alarmingly, in recent years an increasing number of bacteria have become resistant to these antibiotics. A major strategy employed by these pathogens is to use Zn(II)-dependent enzymes, the metallo-β-lactamases (MBLs), which hydrolyse theβ-lactam ring. Clinically useful MBL inhibitors are not yet available. Consequently, MBLs remain a major threat to human health. In this review biochemical properties of MBLs are discussed, focusing in particular on the interactions between the enzymes and the functionally essential metal ions. The precise role(s) of these metal ions is still debated and may differ between different MBLs. However, since they are required for catalysis, their binding site may present an alternative target for inhibitor design.展开更多
Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter...Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter species were screened for imipenem resistance by Kirby- Bauer disc diffusion methods.Detection of MBL production was(lone by imipenem-EDTA combined disc test,double disc synerygy test(DDST) and imipenem-EDTA MBL E test.Results: A total of 63(57.8%) strains of P.aeruginosa and 46(54.1%) strains of Acinetobacter spp.were found to be resistant to imipenem.Of the 63 imipenem resistant P.aeruginosa tested for MBL production.44(69.89;) were found to be positive and among 46 imipenem resistant Acinetobacter. 19(41.3%) were shown to be the MBL producers.Conclusions:Imipenem-EDTA combined disc test and MBL E test are equally effective for MBL detection in both P.aeruginosa and Acinetobacter spp.,but given the cost-constraints,combined disc can be used as a convenient screening method in the clinical microbiology laboratory.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ...Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.展开更多
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int...The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.展开更多
Pseudomonas aeruginosa is a major cause of nosocomial infections with high mortality rates. The organism is highly resistant to most classes of drugs used and can develop resistance during treatment. One of the resist...Pseudomonas aeruginosa is a major cause of nosocomial infections with high mortality rates. The organism is highly resistant to most classes of drugs used and can develop resistance during treatment. One of the resistance mechanisms of P. aeruginosais is Metallo-β-Lactamase (MBL) production. MBL producing P. aeruginosa is a major health concern given it’s resistance to almost all available drugs. The prevalence of this resistant strain is unknown since there is no standardized method for testing MBL production. This was a laboratory based cross-sectional prospective study that was carried out from September 2015 to March 2016 at Kenyatta National Hospital. Ninety-nine isolates of P. aeruginosa were collected during the period and tested for antimicrobial susceptibility and isolates found to be resistant to imipenem tested for MBL production. The results indicated high resistance of P. aeruginosa to commonly used drugs. Of the isolates tested 69.7% were resistant to piperacillin, 63.6% were resistant to aztreonam, 58.6% were resistant to levofloxacin, 55.6% were resistant to cefipime, 65.7% were resistant to ceftazidime, 68.7% were resistant to ticarcillin-clavulanate, 72.2% were resistant to meropenem, 64.9% were resistance to imipenem while 86.4% of urine isolates were resistant to ofloxacin. Of the isolates resistant to imipenem 87.3% were found to be MBL producers. In conclusion, P. aeruginosais highly resistant to the drugs currently is used for treatment and resistance to carbapenems is largely due to MBL production.展开更多
Metallo-β-lactamases (MBLs) are a family of Zn2+-dependent enzymes that have contributed strongly to the emergence and spread of antibiotic resistance. Novel members as well as variants of existing members of this fa...Metallo-β-lactamases (MBLs) are a family of Zn2+-dependent enzymes that have contributed strongly to the emergence and spread of antibiotic resistance. Novel members as well as variants of existing members of this family are discovered continuously, compounding their threat to global health care. MBLs are divided into three subgroups, i.e. B1, B2 and B3. The recent discovery of an unusual MBL from Serratia proteamaculans (SPR-1) suggests the presence of an additional subgroup, i.e. B4. A database search reveals that SPR-1 has only one homologue from Cronobacter sakazakii, CSA-1.These two MBLs have a unique active site and may employ a mechanism distinct from other MBLs, but reminiscent of some organophosphate-degrading hydrolases.展开更多
Objective: Increasing the emergence of Metallo-β-lactamase (MBL) producing gram-negative bacteria and their dexterous horizontal transmission demands rapid and accurate detection. This study was conducted to determin...Objective: Increasing the emergence of Metallo-β-lactamase (MBL) producing gram-negative bacteria and their dexterous horizontal transmission demands rapid and accurate detection. This study was conducted to determine a suitable method to promptly detect MBL-producing gram-negative bacteria. Methods: A total of 103 gram-negative bacteria were identified from various clinical samples at a tertiary care hospital in Dhaka city. MBL producers were detected by two phenotypic methods, the Disk Potentiation Test (DPT) and the Double Disk Synergy Test (DDST) based on β-lactam chelator combinations where EDTA/SMA has been used as an inhibitor and Imipenem, Ceftazidime as substrates. Results: 103 isolates which were identified as Escherichia coli spp, Klebsiella spp, Pseudomonas spp, Acinetobacter spp, Proteus spp, Providencia spp were found to be multidrug-resistant in antibiogram test. Isolates showed complete resistance (100%) to Imipenem, Meropenem, and Amoxiclav. The highest carbapenem-resistant etiological agents were Acinetobacter spp 40 (38.8%) followed by Pseudomonas spp 27 (26.2%), Klebsiella spp 26 (25.2%), Escherichia coli 8 (7.8%), Proteus spp 1 (1%) and Providencia spp 1 (1%). DPT method detected significantly (p = 0.000009) a higher number of MBL-producers (Imipenem with 0.5 M EDTA n = 61, 59.2% & Ceftazidime with 0.5 M EDTA n = 56, 54.4%) compared to the DDST method (Imipenem -0.5 M EDTA n = 43, 41.7%, Imipenem – SMA n = 38, 36.9% & Ceftazidime -0.5 M EDTA n = 15, 14.6%). Conclusion: Pieces of evidence suggest that DPT is a more sensitive method than DDST and could be recommended for identifying MBL-producing bacteria in Bangladeshi hospitals for the proper management of patients, to reduce time constraints and treatment costs.展开更多
Antibiotic resistance has emerged as a major global threat to human health. Among the strategies employed by pathogens to acquire resistance the use of metallo-β-lactamases (MBLs), a family of dinuclear metalloenzyme...Antibiotic resistance has emerged as a major global threat to human health. Among the strategies employed by pathogens to acquire resistance the use of metallo-β-lactamases (MBLs), a family of dinuclear metalloenzymes, is among the most potent. MBLs are subdivided into three groups (i.e. B1, B2 and B3) with most of the virulence factors belonging to the B1 group. The recent discovery of AIM-1, a B3-type MBL, however, has illustrated the potential health threat of this group of MBLs. Here, we employed a bioinformatics approach to identify and characterize novel B3-type MBLs from Novosphingobium pentaromativorans and Simiduia agarivorans. These enzymes may not yet pose a direct risk to human health, but their structures and function may provide important insight into the design and synthesis of a still elusive universal MBL inhibitor.展开更多
The aim of the study was to investigate the prevalence and characterization of extended-spectrum β-lactamase (ESBL)- producing Escherichia coli isolated from bovine mastitis cases in China. ChromID ESBL agar was us...The aim of the study was to investigate the prevalence and characterization of extended-spectrum β-lactamase (ESBL)- producing Escherichia coli isolated from bovine mastitis cases in China. ChromID ESBL agar was used to confirm ESBL-producing E. coli. PCR and DNA sequencing were employed to characterize the genotype of ESBL-producers. Antimicrobial susceptibility was measured by disc diffusion. Overall, 73 of 318 E. coli isolates (22.96%) were identified as ESBL-producers. Of these ESBL-producing E. coli, the prevalence of blaCTX-M and blaTEM-1 was 97.26 and 71.23%, respectively. The predominant CTX-M-type ESBL was CTX-M-15 (65.75%), followed by CTX-M-14 (10.96%), CTX-M-55 (9.59%), CTX-M-64 (5.48%), CTX-M-65 (4.11%) and CTX-M-3 (1.37%). This study is the first report of CTX-M-64 and CTX-M-65 in E. coli isolated from bovine mastitis. Furthermore, 72 ESBL-producing E. coli isolates (98.63%) were found to be multidrug-resistance. This study noted high prevalence and rates of antimicrobial resistance of ESBL-producing E. coli isolates from bovine mastitis cases in China.展开更多
The gene and the amino acid sequence of the structural and regulatory region of the Pseudomonas aeruginosa with different resistance patterns were analyzed. Six strains with different resistance patterns were selected...The gene and the amino acid sequence of the structural and regulatory region of the Pseudomonas aeruginosa with different resistance patterns were analyzed. Six strains with different resistance patterns were selected and the AmpC β-lactamase was identified. The objective gene fragment was amplified by colonies PCR. The sequences of the PCR-products were analyzed. The DNA sequence of the structural gene ampC and the regulatory genes ampR, ampD and ampE was detected. The 6 strains and the wild-type Pseudomonas aeruginosa are highly homogeneous in structural and regulatory region. Some new mutant points were found.展开更多
To analyse the genotypes of clinical isolates of Extended-Spectrum-β-Lactamase-Producing (ESBL-producing) Proteus mirabilis (P. mirabilis) and the mechanisms of antimicrobial resistance, to guide reasonable use of an...To analyse the genotypes of clinical isolates of Extended-Spectrum-β-Lactamase-Producing (ESBL-producing) Proteus mirabilis (P. mirabilis) and the mechanisms of antimicrobial resistance, to guide reasonable use of antibiotics and to avoid nosocomial outbreak infections by ESBL-producing P. mirabilis. 125 clinical isolates of P. mirabilis were collected from the Drug-Resistant Bacteria Surveillance Center of Anhui Province (from Jan 2009 to May 2010). Searching for the genotypes of ESBLs was perfomed by PCR amplification and DNA sequencing, and performed conjugation test simultaneously. Among ESBL-producing strains, CTX-M was the major genotype (3 CTX-M-13 and 1 CTX-M-3). TEM-1b spectrum β-lactamase was also prevalence in P. mirabilis. The diversity of β-lactamases in P. mirabilis and the emergency of multi-drug-resistance clinical strains will present serious threat to clinical therapy and even will lead to outbreak of nosocomial infections. Our study emphasizes the need for enhanced supervision of ESBL-producing P. mirabilis. Timely and reasonable drug-resistance data are indispensable to clinical therapy.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
A unicellular cyanobacterium Synechococcus sp. strain PCC 7002 was transformedwith plasmid pQL1, on which β-lactamase gene (bla) and β-galactosidase gene (lacZ) were encoded.The transformant cells released β-lactam...A unicellular cyanobacterium Synechococcus sp. strain PCC 7002 was transformedwith plasmid pQL1, on which β-lactamase gene (bla) and β-galactosidase gene (lacZ) were encoded.The transformant cells released β-lactamase into medium by an abrupt drop of osmotic pressure. This re-sult indicates that this cyanobacterium recognizes and processes the signal sequence of β-lactamase, andaccumulates the enzyme in periplasm. Repeated release of β-lactamase was possible by repeated osmoticshocks without impairing cell viability. On the other hand, most of the β-galactosidase remained in cyto-plasm under the osmotic shock.展开更多
To determine the multidrug resistance extended spectrum β-lactamase and AmpC (ESBL/AmpC producing) Escherichia coli (E. coli) isolated from the environment of Bogor slaughterhouse, Indonesia.MethodsA total of 35...To determine the multidrug resistance extended spectrum β-lactamase and AmpC (ESBL/AmpC producing) Escherichia coli (E. coli) isolated from the environment of Bogor slaughterhouse, Indonesia.MethodsA total of 35 samples from 7 locations in slaughterhouse i.e., source of water, slaughtering floor, swab of carcass area floor, swab of evisceration area floor, untreated waste water, treated waste water, drinking water for cattle were collected from March to April 2016. Presence of ESBL/AmpC producing E. coli and susceptibility testing against 8 antimicrobial agents (penicillin G, streptomycin, gentamycin, ciprofloxacin, enrofloxacin, tetracycline, trimethoprim-sulfamethoxazole, and polymyxin B) were detected by disk diffusion test according to Clinical and Laboratory Standards Institute.ResultsESBL/AmpC producing E. coli were identified in 14.3% (5/35) of the collected samples from the environment of Bogor slaughterhouse. ESBL/AmpC-producing E. coli isolates were detected in untreated waste water (n = 3), slaughtering floor (n = 1), and carcass area floor (n = 1). Most of ESBL/AmpC-producing E. coli isolates (80%) showed multidrug resistance phenotypes against at least three classes of antibiotics. The highest incidence of antibiotics resistance was against penicillin G (100.0%) and streptomycin (100.0%), followed by gentamicin (60.0%), trimethoprim-sulfamethoxazole (60.0%), tetracycline (40.0%), ciprofloxacin (40.0%), enrofloxacin (20.0%), and polymyxin B (0.0%).ConclusionsThe transmission of antimicrobial resistant bacteria into the environment may be a potential risk for human health.展开更多
Objective:To study the molecular mechanisms of β-lactamase production in ampicillin resistant(AmP ) Hae- mophilus influenzae(HI). Methods: Identified the β-lactamases production strain from AmP HI was isolated from ...Objective:To study the molecular mechanisms of β-lactamase production in ampicillin resistant(AmP ) Hae- mophilus influenzae(HI). Methods: Identified the β-lactamases production strain from AmP HI was isolated from clinical cases with K-B method. β-lactamase encoding gene in enzyme production strains were detected by PCR with lactamase gene specific primers, and both plasmid and chromosomal DNA samples. Results: Thirty-two out of 36 (88 .9% ) were found to be β-lactamase production. Twenty-nine out of 32 enzyme production stain were PCR positive (the ratio of PCR positives 90.6% ). There were 25 stains amplified with plasmid DNA positively, and 4 with chromosomal DNA. Conclusion: (l ) Most of the AmPr HI strain produce lactamase is mediated by plasmid. (2) Detection of lactamase encoding gene in HI is a simple and efficient approach to study the molecular basis of ampicillin resistance.展开更多
Objective:To determine the clinical implication of and intestinal carriage with methicillin resistant Staphylococcus aureus(MRSA) and extended spectrumβ-lactamase(ESBL)-producing Enterobacteriacae.Methods: A total of...Objective:To determine the clinical implication of and intestinal carriage with methicillin resistant Staphylococcus aureus(MRSA) and extended spectrumβ-lactamase(ESBL)-producing Enterobacteriacae.Methods: A total of 180 stool specimens were screened for MRSA and ESBL-producing enterobacteria.Identification of ESBL- producing Enterobacteriacae was done by MicroScan Walk Away 96 system(Dade Behring Inc.,West Sacramento,CA 95691,USA ) and confirmation by double-disc synergy test.MRSA was identified by disc diffusion using 30μg cefoxitin disc and the MicroScan.Results:The rate of fecal MRSA carriage was 7.8% (14/180),35.7%(5 /14) were recovered from surgical wards.Three patients(21,4%) had MRSA recovered from other body sites,and 2(14.2%) had in addition ESBL -producing Escherichia coli(E.coli) and Klebsiella pneumoniae(K.pneumoniae) respectively.Four(28.5%) patients with MRSA fical carriage died. MRSA fecal carriage was recovered from both inpatients and outpatients.Four(2.2%) cases carried ESBL-producing Enterobacteriacae in feces.Three(75%) were from intensive care unit(ICU).One patient had both ESBL-producing E.coli and K.pneumoniae from stool as well as E.coli from tracheal aspirate.Two ICU patients with fecal ESBL died.Conclusion:Fecal screening for MRSA and ESBL of all patients at high risk admitted to different hospital wards and ICUs and implementing infection control measures were recommended.展开更多
基金supported by the Ministry of Higher Education under the Fundamental Research Grant Scheme(FRGS/1/2021/SKK0/UPM/02/8)the Universiti Putra Malaysia Research University Grant Scheme(GP/IPS/2021/9702000).
文摘Objective:To determine the distribution,phenotypic and genetic background of extended spectrumβ-lactamases(ESBL)-producing Klebsiella(K.)pneumoniae clinical isolates associated with K1 and K2 serotypes in two selected hospitals in Malaysia.Methods:A total of 192 K.pneumoniae isolates were collected and subjected to antibiotic susceptibility,hypermucoviscosity test and multiplex PCR to detect the presence of K1-and K2-serotype associated genes.Multilocus sequence typing(MLST)was performed on ESBL-producing K.pneumoniae isolates presented with K1 and K2 serotypes,followed by phylogenetic analysis.Results:A total of 87 out of 192(45.3%)of the K.pneumoniae isolates collected were ESBL producers.However,only 8.3%(16/192)and 10.9%(21/192)of the total isolates were detected to carry K1-and K2-serotype associated genes,respectively.Statistical analysis showed that K1 and K2 capsular serotypes were not significantly associated with ESBL phenotype(P=0.196).However,they were significantly associated with hypervirulent,as demonstrated by the positive string test(P<0.001).MLST analysis revealed that ST23 as the predominant sequence type(ST)in the K1 serotype,while the ST in the K2 serotype is more diverse.Conclusions:Although the occurrence of ESBL-producing isolates among the hypervirulent strains was low,their coexistence warrants the need for continuous surveillance.MLST showed that these isolates were genetically heterogeneous.
文摘Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.
基金N.M.thanks the Science Foundation Ireland(SFI)for financial support in form of a President of Ireland Young Researcher Award(PIYRA) G.S.acknowledges the award of a Future Fellowship from the Australian Research Council(FT120100694)and is grateful to the National Health and Medical Research Council of Australia for funding.
文摘Antibiotic resistance is one of the most significant challenges facing global healthcare. Since the 1940s, antibiotics have been used to fight infections, initially with penicillin and subsequently with various derivatives including cephalosporins, carbapenams and monobactams. A common characteristic of these antibiotics is the four-memberedβ-lactam ring. Alarmingly, in recent years an increasing number of bacteria have become resistant to these antibiotics. A major strategy employed by these pathogens is to use Zn(II)-dependent enzymes, the metallo-β-lactamases (MBLs), which hydrolyse theβ-lactam ring. Clinically useful MBL inhibitors are not yet available. Consequently, MBLs remain a major threat to human health. In this review biochemical properties of MBLs are discussed, focusing in particular on the interactions between the enzymes and the functionally essential metal ions. The precise role(s) of these metal ions is still debated and may differ between different MBLs. However, since they are required for catalysis, their binding site may present an alternative target for inhibitor design.
文摘Objective:To detect and evaluate the various methods for metallo-β-lactamases(MBL) production in Pseudomonas aeruginosa(P.aeruginosa) and Acinetobacter species.Methods:A total of 109 P.aeruginosa and 85 Acinetobacter species were screened for imipenem resistance by Kirby- Bauer disc diffusion methods.Detection of MBL production was(lone by imipenem-EDTA combined disc test,double disc synerygy test(DDST) and imipenem-EDTA MBL E test.Results: A total of 63(57.8%) strains of P.aeruginosa and 46(54.1%) strains of Acinetobacter spp.were found to be resistant to imipenem.Of the 63 imipenem resistant P.aeruginosa tested for MBL production.44(69.89;) were found to be positive and among 46 imipenem resistant Acinetobacter. 19(41.3%) were shown to be the MBL producers.Conclusions:Imipenem-EDTA combined disc test and MBL E test are equally effective for MBL detection in both P.aeruginosa and Acinetobacter spp.,but given the cost-constraints,combined disc can be used as a convenient screening method in the clinical microbiology laboratory.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金financially supported by the Original Exploration Project of the National Natural Science Foundation of China(No.52150079)the National Natural Science Foundation of China(Nos.U22A20130,U2004215,and 51974280)+1 种基金the Natural Science Foundation of Henan Province of China(No.232300421196)the Project of Zhongyuan Critical Metals Laboratory of China(Nos.GJJSGFYQ202304,GJJSGFJQ202306,GJJSGFYQ202323,GJJSGFYQ202308,and GJJSGFYQ202307)。
文摘Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
基金supported by the National Natural Science Foundation of China(Nos.52172214,52272221,52171182)the Postdoctoral Innovation Project of Shandong Province(No.202102003)+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01)the Qilu Young Scholar ProgramHPC Cloud Platform of Shandong University are also thanked.
文摘The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.
文摘Pseudomonas aeruginosa is a major cause of nosocomial infections with high mortality rates. The organism is highly resistant to most classes of drugs used and can develop resistance during treatment. One of the resistance mechanisms of P. aeruginosais is Metallo-β-Lactamase (MBL) production. MBL producing P. aeruginosa is a major health concern given it’s resistance to almost all available drugs. The prevalence of this resistant strain is unknown since there is no standardized method for testing MBL production. This was a laboratory based cross-sectional prospective study that was carried out from September 2015 to March 2016 at Kenyatta National Hospital. Ninety-nine isolates of P. aeruginosa were collected during the period and tested for antimicrobial susceptibility and isolates found to be resistant to imipenem tested for MBL production. The results indicated high resistance of P. aeruginosa to commonly used drugs. Of the isolates tested 69.7% were resistant to piperacillin, 63.6% were resistant to aztreonam, 58.6% were resistant to levofloxacin, 55.6% were resistant to cefipime, 65.7% were resistant to ceftazidime, 68.7% were resistant to ticarcillin-clavulanate, 72.2% were resistant to meropenem, 64.9% were resistance to imipenem while 86.4% of urine isolates were resistant to ofloxacin. Of the isolates resistant to imipenem 87.3% were found to be MBL producers. In conclusion, P. aeruginosais highly resistant to the drugs currently is used for treatment and resistance to carbapenems is largely due to MBL production.
基金N.M.thanks the Science Foundation Ireland(SFI)for financial support in the form of a President of Ireland Young Researcher Award(PIYRA)G.S.acknowledges the award of a Future Fellowship from the Australian Research Council(FT120100694)D.O.and G.S.are grateful to the National Health and Medical Research Council of Aus-tralia for funding.
文摘Metallo-β-lactamases (MBLs) are a family of Zn2+-dependent enzymes that have contributed strongly to the emergence and spread of antibiotic resistance. Novel members as well as variants of existing members of this family are discovered continuously, compounding their threat to global health care. MBLs are divided into three subgroups, i.e. B1, B2 and B3. The recent discovery of an unusual MBL from Serratia proteamaculans (SPR-1) suggests the presence of an additional subgroup, i.e. B4. A database search reveals that SPR-1 has only one homologue from Cronobacter sakazakii, CSA-1.These two MBLs have a unique active site and may employ a mechanism distinct from other MBLs, but reminiscent of some organophosphate-degrading hydrolases.
文摘Objective: Increasing the emergence of Metallo-β-lactamase (MBL) producing gram-negative bacteria and their dexterous horizontal transmission demands rapid and accurate detection. This study was conducted to determine a suitable method to promptly detect MBL-producing gram-negative bacteria. Methods: A total of 103 gram-negative bacteria were identified from various clinical samples at a tertiary care hospital in Dhaka city. MBL producers were detected by two phenotypic methods, the Disk Potentiation Test (DPT) and the Double Disk Synergy Test (DDST) based on β-lactam chelator combinations where EDTA/SMA has been used as an inhibitor and Imipenem, Ceftazidime as substrates. Results: 103 isolates which were identified as Escherichia coli spp, Klebsiella spp, Pseudomonas spp, Acinetobacter spp, Proteus spp, Providencia spp were found to be multidrug-resistant in antibiogram test. Isolates showed complete resistance (100%) to Imipenem, Meropenem, and Amoxiclav. The highest carbapenem-resistant etiological agents were Acinetobacter spp 40 (38.8%) followed by Pseudomonas spp 27 (26.2%), Klebsiella spp 26 (25.2%), Escherichia coli 8 (7.8%), Proteus spp 1 (1%) and Providencia spp 1 (1%). DPT method detected significantly (p = 0.000009) a higher number of MBL-producers (Imipenem with 0.5 M EDTA n = 61, 59.2% & Ceftazidime with 0.5 M EDTA n = 56, 54.4%) compared to the DDST method (Imipenem -0.5 M EDTA n = 43, 41.7%, Imipenem – SMA n = 38, 36.9% & Ceftazidime -0.5 M EDTA n = 15, 14.6%). Conclusion: Pieces of evidence suggest that DPT is a more sensitive method than DDST and could be recommended for identifying MBL-producing bacteria in Bangladeshi hospitals for the proper management of patients, to reduce time constraints and treatment costs.
基金N.M.thanks the Science Foundation Ireland(SFI)for financial support in form of a President of Ireland Young Researcher Award(PIYRA)G.S.acknowledges the award of a Future Fellowship from the Australian Research Council(FT120100694)is grateful to the National Health and Medical Research Council of Australia for funding.
文摘Antibiotic resistance has emerged as a major global threat to human health. Among the strategies employed by pathogens to acquire resistance the use of metallo-β-lactamases (MBLs), a family of dinuclear metalloenzymes, is among the most potent. MBLs are subdivided into three groups (i.e. B1, B2 and B3) with most of the virulence factors belonging to the B1 group. The recent discovery of AIM-1, a B3-type MBL, however, has illustrated the potential health threat of this group of MBLs. Here, we employed a bioinformatics approach to identify and characterize novel B3-type MBLs from Novosphingobium pentaromativorans and Simiduia agarivorans. These enzymes may not yet pose a direct risk to human health, but their structures and function may provide important insight into the design and synthesis of a still elusive universal MBL inhibitor.
基金funded by the National Key R&D Program of China (2017YFD0502200)the Central PublicInterest Scientific Institution Basal Research Fund,China (1610322017013)
文摘The aim of the study was to investigate the prevalence and characterization of extended-spectrum β-lactamase (ESBL)- producing Escherichia coli isolated from bovine mastitis cases in China. ChromID ESBL agar was used to confirm ESBL-producing E. coli. PCR and DNA sequencing were employed to characterize the genotype of ESBL-producers. Antimicrobial susceptibility was measured by disc diffusion. Overall, 73 of 318 E. coli isolates (22.96%) were identified as ESBL-producers. Of these ESBL-producing E. coli, the prevalence of blaCTX-M and blaTEM-1 was 97.26 and 71.23%, respectively. The predominant CTX-M-type ESBL was CTX-M-15 (65.75%), followed by CTX-M-14 (10.96%), CTX-M-55 (9.59%), CTX-M-64 (5.48%), CTX-M-65 (4.11%) and CTX-M-3 (1.37%). This study is the first report of CTX-M-64 and CTX-M-65 in E. coli isolated from bovine mastitis. Furthermore, 72 ESBL-producing E. coli isolates (98.63%) were found to be multidrug-resistance. This study noted high prevalence and rates of antimicrobial resistance of ESBL-producing E. coli isolates from bovine mastitis cases in China.
基金This project was supported by a grant from the National Natural Sciences Foundation of China (No.39870873).
文摘The gene and the amino acid sequence of the structural and regulatory region of the Pseudomonas aeruginosa with different resistance patterns were analyzed. Six strains with different resistance patterns were selected and the AmpC β-lactamase was identified. The objective gene fragment was amplified by colonies PCR. The sequences of the PCR-products were analyzed. The DNA sequence of the structural gene ampC and the regulatory genes ampR, ampD and ampE was detected. The 6 strains and the wild-type Pseudomonas aeruginosa are highly homogeneous in structural and regulatory region. Some new mutant points were found.
文摘To analyse the genotypes of clinical isolates of Extended-Spectrum-β-Lactamase-Producing (ESBL-producing) Proteus mirabilis (P. mirabilis) and the mechanisms of antimicrobial resistance, to guide reasonable use of antibiotics and to avoid nosocomial outbreak infections by ESBL-producing P. mirabilis. 125 clinical isolates of P. mirabilis were collected from the Drug-Resistant Bacteria Surveillance Center of Anhui Province (from Jan 2009 to May 2010). Searching for the genotypes of ESBLs was perfomed by PCR amplification and DNA sequencing, and performed conjugation test simultaneously. Among ESBL-producing strains, CTX-M was the major genotype (3 CTX-M-13 and 1 CTX-M-3). TEM-1b spectrum β-lactamase was also prevalence in P. mirabilis. The diversity of β-lactamases in P. mirabilis and the emergency of multi-drug-resistance clinical strains will present serious threat to clinical therapy and even will lead to outbreak of nosocomial infections. Our study emphasizes the need for enhanced supervision of ESBL-producing P. mirabilis. Timely and reasonable drug-resistance data are indispensable to clinical therapy.
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
文摘A unicellular cyanobacterium Synechococcus sp. strain PCC 7002 was transformedwith plasmid pQL1, on which β-lactamase gene (bla) and β-galactosidase gene (lacZ) were encoded.The transformant cells released β-lactamase into medium by an abrupt drop of osmotic pressure. This re-sult indicates that this cyanobacterium recognizes and processes the signal sequence of β-lactamase, andaccumulates the enzyme in periplasm. Repeated release of β-lactamase was possible by repeated osmoticshocks without impairing cell viability. On the other hand, most of the β-galactosidase remained in cyto-plasm under the osmotic shock.
基金support by Budget Implementation Registration Form of Bogor Agricultural University with number:079/SP2H/LT/DRPM/II/2016
文摘To determine the multidrug resistance extended spectrum β-lactamase and AmpC (ESBL/AmpC producing) Escherichia coli (E. coli) isolated from the environment of Bogor slaughterhouse, Indonesia.MethodsA total of 35 samples from 7 locations in slaughterhouse i.e., source of water, slaughtering floor, swab of carcass area floor, swab of evisceration area floor, untreated waste water, treated waste water, drinking water for cattle were collected from March to April 2016. Presence of ESBL/AmpC producing E. coli and susceptibility testing against 8 antimicrobial agents (penicillin G, streptomycin, gentamycin, ciprofloxacin, enrofloxacin, tetracycline, trimethoprim-sulfamethoxazole, and polymyxin B) were detected by disk diffusion test according to Clinical and Laboratory Standards Institute.ResultsESBL/AmpC producing E. coli were identified in 14.3% (5/35) of the collected samples from the environment of Bogor slaughterhouse. ESBL/AmpC-producing E. coli isolates were detected in untreated waste water (n = 3), slaughtering floor (n = 1), and carcass area floor (n = 1). Most of ESBL/AmpC-producing E. coli isolates (80%) showed multidrug resistance phenotypes against at least three classes of antibiotics. The highest incidence of antibiotics resistance was against penicillin G (100.0%) and streptomycin (100.0%), followed by gentamicin (60.0%), trimethoprim-sulfamethoxazole (60.0%), tetracycline (40.0%), ciprofloxacin (40.0%), enrofloxacin (20.0%), and polymyxin B (0.0%).ConclusionsThe transmission of antimicrobial resistant bacteria into the environment may be a potential risk for human health.
文摘Objective:To study the molecular mechanisms of β-lactamase production in ampicillin resistant(AmP ) Hae- mophilus influenzae(HI). Methods: Identified the β-lactamases production strain from AmP HI was isolated from clinical cases with K-B method. β-lactamase encoding gene in enzyme production strains were detected by PCR with lactamase gene specific primers, and both plasmid and chromosomal DNA samples. Results: Thirty-two out of 36 (88 .9% ) were found to be β-lactamase production. Twenty-nine out of 32 enzyme production stain were PCR positive (the ratio of PCR positives 90.6% ). There were 25 stains amplified with plasmid DNA positively, and 4 with chromosomal DNA. Conclusion: (l ) Most of the AmPr HI strain produce lactamase is mediated by plasmid. (2) Detection of lactamase encoding gene in HI is a simple and efficient approach to study the molecular basis of ampicillin resistance.
文摘Objective:To determine the clinical implication of and intestinal carriage with methicillin resistant Staphylococcus aureus(MRSA) and extended spectrumβ-lactamase(ESBL)-producing Enterobacteriacae.Methods: A total of 180 stool specimens were screened for MRSA and ESBL-producing enterobacteria.Identification of ESBL- producing Enterobacteriacae was done by MicroScan Walk Away 96 system(Dade Behring Inc.,West Sacramento,CA 95691,USA ) and confirmation by double-disc synergy test.MRSA was identified by disc diffusion using 30μg cefoxitin disc and the MicroScan.Results:The rate of fecal MRSA carriage was 7.8% (14/180),35.7%(5 /14) were recovered from surgical wards.Three patients(21,4%) had MRSA recovered from other body sites,and 2(14.2%) had in addition ESBL -producing Escherichia coli(E.coli) and Klebsiella pneumoniae(K.pneumoniae) respectively.Four(28.5%) patients with MRSA fical carriage died. MRSA fecal carriage was recovered from both inpatients and outpatients.Four(2.2%) cases carried ESBL-producing Enterobacteriacae in feces.Three(75%) were from intensive care unit(ICU).One patient had both ESBL-producing E.coli and K.pneumoniae from stool as well as E.coli from tracheal aspirate.Two ICU patients with fecal ESBL died.Conclusion:Fecal screening for MRSA and ESBL of all patients at high risk admitted to different hospital wards and ICUs and implementing infection control measures were recommended.