期刊文献+
共找到6,753篇文章
< 1 2 250 >
每页显示 20 50 100
Porous Organic Cage‑Based Quasi‑Solid‑State Electrolyte with Cavity‑Induced Anion‑Trapping Effect for Long‑Life Lithium Metal Batteries
1
作者 Wei-Min Qin Zhongliang Li +7 位作者 Wen‑Xia Su Jia‑Min Hu Hanqin Zou Zhixuan Wu Zhiqin Ruan Yue‑Peng Cai Kang Li Qifeng Zheng 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期376-386,共11页
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie... Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries. 展开更多
关键词 Porous organic cage Cavity-induced anion-trapping Quasi-solid-state electrolyte Homogeneous Li+flux Lithium metal battery
下载PDF
Three-dimensional porous bimetallic metal–organic framework/gelatin aerogels: A readily recyclable peroxymonosulfate activator for efficient and continuous organic dye removal
2
作者 Wenlong Xiang Xian Zhang +1 位作者 Rou Xiao Yanhui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期193-202,共10页
As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemmin... As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management. 展开更多
关键词 Catalyst Environment Wastewater metalorganic framework Gelatin aerogel PEROXYMONOSULFATE
下载PDF
An Fe-Cu bimetallic organic framework as a microwave sensitizer for treating tumors using combined microwave thermotherapy and chemodynamic therapy
3
作者 Xinyang Zhu Chao He +4 位作者 Longfei Tan Xun Qi Meng Niu Xianwei Meng Hongshan Zhong 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第7期1063-1075,共13页
Microwave thermotherapy(MWTT),as a treatment for tumors,lacks specificity and requires sensitizers.Most reported microwave sensitizers are single metal-organic frameworks(MOFs),which must be loaded with ionic liquids ... Microwave thermotherapy(MWTT),as a treatment for tumors,lacks specificity and requires sensitizers.Most reported microwave sensitizers are single metal-organic frameworks(MOFs),which must be loaded with ionic liquids to enhance the performance in MWTT.Meanwhile,MWTT is rarely combined with other treatment modalities.Here,we synthesized a novel FeeCu bimetallic organic framework FeCuMOF(FCM)by applying a hydrothermal method and further modified it with methyl polyethylene glycol(mPEG).The obtained FCM@PEG(FCMP)showed remarkable heating performance under lowpower microwave irradiation;it also acted as a novel nanospheres enzyme to catalyze H_(2)O_(2) decomposition,producing abundant reactive oxygen species(ROS)to deplete glutathione(GSH)and prevent ROS clearance from tumor cells during chemodynamic treatment.The FCMP was biodegradable and demonstrated excellent biocompatibility,allowing it to be readily metabolized without causing toxic effects.Finally,it was shown to act as a suitable agent for T2 magnetic resonance imaging(MRI)in vitro and in vivo.This new bimetallic nanostructure could successfully realize two tumor treatment modalities(MWTT and chemodynamic therapy)and dual imaging modes(T2 MRI and microwave thermal imaging).Our findings represent a breakthrough for integrating the diagnosis and treatment of tumors and provides a reference for developing new microwave sensitizers。 展开更多
关键词 Microwave thermotherapy metal organic frameworks Glutathione scavenging Magnetic resonance imaging Synergism
下载PDF
Metal-Organic Framework Enabling Poly(Vinylidene Fluoride)-Based Polymer Electrolyte for Dendrite-Free and Long-Lifespan Sodium Metal Batteries
4
作者 Yusi Lei Liang Yue +4 位作者 Yuruo Qi Yubin Niu Shujuan Bao Jie Song Maowen Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期68-76,共9页
Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefor... Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention. 展开更多
关键词 dendrite-free gel polymer electrolyte metal organic framework sodium batteries
下载PDF
Imide-pillared covalent organic framework protective films as stable zinc ion-conducting interphases for dendrite-free Zn metal anodes
5
作者 Xiaoman Ye Xuemei Xiao +3 位作者 Zhijing Wu Xin Wu Lin Gu Sheng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期470-477,I0010,共9页
The notorious growth of zinc dendrite and the water-induced corrosion of zinc metal anodes(ZMAs)restrict the practical development of aqueous zinc ion batteries(AZIBs).In this work,a zinc metallized,imide-pillared cov... The notorious growth of zinc dendrite and the water-induced corrosion of zinc metal anodes(ZMAs)restrict the practical development of aqueous zinc ion batteries(AZIBs).In this work,a zinc metallized,imide-pillared covalent organic framework(ZPC)protective film has been engineered as a stable Zn^(2+)ion-conducting interphase to modulate interfacial kinetics and suppress side reactions for ZMAs.Compared to bare Zn,ZPC@Zn exhibits a higher Zn^(2+)ionic conductivity,a larger Zn^(2+)transference number,a lower electronic conductivity,a smaller desolvation activation energy and correspondingly a significant suppression of corrosion,hydrogen evolution and Zn dendrites.Impressively,the ZPC@Zn||ZPC@Zn symmetric cell obtains a cycling lifespan over 3000 h under 5 mA cm^(-2)for 1 mA h cm^(-2).The ZPC@Zn||NH_(4)V_(4)O_(10)coin-type full battery delivers a specific capacity of 195.8 mA h g^(-1)with a retention rate of78.5%at 2 A g^(-1)after 1100 cycles,and the ZPC@Zn||NH_(4)V_(4)O_(10) pouch full cell shows a retention of70.1%in reversible capacity at 3 A g^(-1)after 1100 cycles.The present incorporation of imide-linked covalent organic frameworks in the surface modification of ZMAs will offer fresh perspectives in the search for ideal protective films for the practicality of AZIBs. 展开更多
关键词 Aqueous zinc ion batteries Zinc metal anodes Surface modification Covalent organic frameworks Imide linkage
下载PDF
Positional functionalizations of metal–organic frameworks through invasive ligand exchange and additory MOF-on-MOF strategies:A review
6
作者 Daeyeon Lee Sangho Lee +1 位作者 Isaac Choi Min Kim 《Smart Molecules》 2024年第2期63-84,共22页
Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce funct... Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce functional groups at specificpositions within pores and crystals.This review explores two prominent strategiesfor achieving the positional functionalization of MOFs:post-synthetic ligand exchange(PSE)and MOF-on-MOF.In PSE,the existing ligands within solid-stateMOFs can be selectively replaced by the desired functional groups in solutionthrough ligand dynamics.This invasive functionalization provides a flexibleapproach to fine-tuning the surface of the MOFs with the target functionality.Conversely,MOF-on-MOF strategies are additive methodologies involving thecontrolled growth of one MOF layer onto another.The functionality of the core andshell(or surface)can be independently controlled.This review critically examinesthe examples,strengths,limitations,and applications of these strategies,emphasizingtheir significance in advancing the field of MOF functionalization andpaving the way for tailored multifunctional materials with precise and specificproperties. 展开更多
关键词 metalorganic frameworks(MOFs) MOF-on-MOF multifunctional materials porous coordination polymers(PCPs) post-synthetic exchanges(PSEs)
下载PDF
Metal–Organic Frameworks-Derived Porous Yolk–Shell MoP/Cu_(3)P@carbon Microcages as High-Performance Anodes for Sodium-Ion Batteries 被引量:3
7
作者 Yanyou Yin Yu Zhang +2 位作者 Nannan Liu Lishuang Fan Naiqing Zhang 《Energy & Environmental Materials》 SCIE 2020年第4期529-534,共6页
Transitional metal phosphides(TMPs)anode materials usually have large volume change and weak diffusion kinetics,leading to poor cycle stability.Combining TMPs with conductive carbon matrix has been widely used to boos... Transitional metal phosphides(TMPs)anode materials usually have large volume change and weak diffusion kinetics,leading to poor cycle stability.Combining TMPs with conductive carbon matrix has been widely used to boost sodium storage.However,it still needs to make efforts in the rational and facile design of nano/micro-structural TMPs/carbon hybrid anode material.Herein,a MOFs-derived strategy is developed to synthesize porous yolk–shell Mo P/Cu_(3)P@carbon microcages(Mo P/Cu_(3)P@C)through in situ and confined phosphidation reaction as a high-performance sodium-ion batteries anode.This yolk–shell structure can offer adequate internal space to buffer the large volume expansion,shorten diffusion distance,and create more active sites of Na+.Especially,the Cu nanoparticles generated from Cu_(3)P have remarkable electronic conductivity of 5.73107S m-1(the second most conductive metal)to benefit transporting electrons.And the introduction of Mo(Mo P has high theoretical capacity of 633 mA h g^(-1))can enhance the reversible capacity of the whole anode material.Therefore,these porous yolk–shell Mo P/Cu_(3)P@carbon microcages possess excellent reversible capacity of 307.8 mA h g^(-1)at 1.0 A g^(-1)and extraordinary cycle stability of 132.1 m A h g^(-1)at 5.0 A g^(-1)even after 6000 cycles. 展开更多
关键词 sodium-ion batteries metalorganic frameworks MOP Cu_(3)P yolk–shell
下载PDF
Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts 被引量:27
8
作者 刘雨溪 邓积光 +2 位作者 谢少华 王治伟 戴洪兴 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1193-1205,共13页
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys... Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs. 展开更多
关键词 Volatile organic compound Catalytic combustion Porous transition metal oxide Perovskite-type oxide Supported noble metal catalyst
下载PDF
Investigation on the Accumulation of Heavy Metals from Organic Fertilizer in Soil and Plant 被引量:6
9
作者 杨晓磊 王寓群 +3 位作者 严瑾 王华 林天杰 朱恩 《Agricultural Science & Technology》 CAS 2013年第7期1021-1025,共5页
ObjectiveThis study aimed to investigate the accumulation of heavy metals from organic fertilizer in soil and plant. MethodThree plots were chosen in Shanghai suburb to measure the heavy metal accumulation by monitori... ObjectiveThis study aimed to investigate the accumulation of heavy metals from organic fertilizer in soil and plant. MethodThree plots were chosen in Shanghai suburb to measure the heavy metal accumulation by monitoring their concentrations in soil and plant after organic fertilizer was applied. We also analyzed the correlations of the heavy metals in soil and plants. Single-factor pollution index and Nemerow’s synthetical pollution index were adopted to evaluate the heavy metal contamination in soils. Moreover, how many years before the heavy metal accumulation will exceed the environmental capability if 45 t/hm 2 organic fertilizer is applied every year was also estimated in the present study. ResultThe rules of heavy metals’ accumulation in soil changed with the various soil characters and pH. The average concentrations of Pb, Cd and As in the tested plants exceeded the limits. The average concentration of Cu in the tested soil shared positive correlation with that in the tested plants. The average concentration of Pb in the tested soil was negatively correlated with that in the tested plant while the other heavy metals didn’t show the rule like that. Organic fertilizer application caused no obvious pollution to the soils. Cu would exceed the standard environmental capacity within 15 years if 45 t/hm 2 organic fertilizer is applied every year, while for Hg, it will be 2 000 years. ConclusionWhen the excessive organic fertilizer is put into the land, the heavy metals from organic fertilizer would accumulate in soil and plant. With continued excessive fertilization, the heavy metals especially Cu would exceed the stan- dard environmental capacity. More attention should be paid to the inputting amount of the organic fertilizer. 展开更多
关键词 organic fertilizer Heavy metal SOIL CROP ACCUMULATION
下载PDF
Effects of Metal Ions and Organic Solvents on Alkaline Phosphatase from Rice-field Eel 被引量:7
10
作者 黄毅 唐云明 《Agricultural Science & Technology》 CAS 2008年第2期112-115,共4页
[Objective]The mechanism of alkaline phosphatase(ALP) was studied to promote rice-field eel aquaculture industry. [ Method] The effects of effectors such as multiple metal ions and organic solvents on ALP in viscera... [Objective]The mechanism of alkaline phosphatase(ALP) was studied to promote rice-field eel aquaculture industry. [ Method] The effects of effectors such as multiple metal ions and organic solvents on ALP in viscera of rice-field eel. [ Result] Na^+ and K ^+ didn't generate big influences on enzyme activity;Mg^2+ and Ca^2+ could promote ALP while Li^+,Cu^2+ and Zn^2+ could restrain ALP enzyme activity. Both HPO4^2- and WO4^2- generated by en- zyme catalyzing disodium phenyl phosphate possessed strong inhibitory effects on emzymc, and 9.5 mmol/L HPO4^2 - would make enzyme activity decline by 13% while 9.5 mmol/L WO4^3- would make enzyme decline by 34%. The inhibition types of them were both competitive inhibition on enzyme activity. The organic solvents such as methanol, ethanol,ethylene glycol,isopropannl all generated influences on ALP and the order according to their inhibitory effects was isopropanol 〉 ethanol 〉 methanol 〉 ethylene glycol. [ Conclusion] The inflncnces of various effeetors on ALP aetivity of rice-field eel were studied from dynamics perspective to provide theoretical basis for further clarifying ALP mechanism. 展开更多
关键词 metal ion organic solvent Alkaline phosphatase Rice-field eel
下载PDF
STUDY ON DEGRADATION OF LDPE CATALYZED BY MULTI-VALENCE METALLIC ORGANIC COMPOUNDS AT COMPOST TEMPERATURE
11
作者 于九皋 陈崧哲 《Transactions of Tianjin University》 EI CAS 2001年第4期290-293,共4页
The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost... The catalytic effects of the organic compounds of iron,tin and manganese on the degradation of low density polyethylene (LDPE) at compost temperature are discussed.A series of samples were aged in a simulating compost environment.The mechanical properties,viscosity average molecular weight (M η) of PE and hydroperoxide (POOH) concentration in the samples were measured.FT IR and DSC were also applied to characterize some samples.It was shown that the above mentioned metallic organic compounds can catalyze the degradation of LDPE efficiently.After 2 months aging,all samples with catalysts became fragile and the M η of the material decreased dramatically.Furthermore,the concentration of carbonyl and the degree of crystallinity of the material increased with the aging time. 展开更多
关键词 polyethylene multi valence metallic organic compound COMPOST DEGRADATION HYDROPEROXIDE
下载PDF
Nitrogen ligands in two-dimensional covalent organic frameworks for metal catalysis 被引量:4
12
作者 张健强 彭永胜 +3 位作者 冷文光 高艳安 徐斐斐 柴金岭 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期468-475,共8页
We introduced bipyridine ligands into a series of two‐dimensional (2D) covalent organic frame‐works (COFs) using 2,2’‐bipyridine‐5,5’‐dicarbaldehyde (2,2’‐BPyDCA) as a component in the mixed building bl... We introduced bipyridine ligands into a series of two‐dimensional (2D) covalent organic frame‐works (COFs) using 2,2’‐bipyridine‐5,5’‐dicarbaldehyde (2,2’‐BPyDCA) as a component in the mixed building blocks. The framework of the COFs was formed by the linkage of imine groups. The ligand content in the COFs was synthetically tuned by the content of 2,2’‐BPyDCA, and thus the amount of metal, palladium(II) acetate, bonded to the nitrogen ligands could be manipulated. Both the bipyri‐dine ligands and imine groups can coordinate with Pd(II) ions, but the loading position can be var‐ied, with one ligand favoring binding in the space between adjacent COFs’ layers and the other lig‐and favoring binding within the pores of the COFs. The Pd(II)‐loaded COFs exhibited good catalytic activity for the Heck reaction. 展开更多
关键词 Covalent organic framework metal catalysis Heck reaction Nitrogen ligand PALLADIUM
下载PDF
A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework 被引量:6
13
作者 白杨芝 衣宝廉 +4 位作者 李佳 蒋尚峰 张洪杰 邵志刚 宋玉江 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1127-1133,共7页
The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report... The development of a non-precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report the synthesis of a NPME by heat-treating Co-based metal organic frameworks (ZIF-67) with a small average size of 44 nm. The electrocatalyst pyrolyzed at 600 ~C showed the best performance and the performance was enhanced when it was supported on BP 2000. The resulting electrocatalyst was composed of 10 nm Co nanoparticles coated by 3-12 layers of N doped graphite layers which as a whole was embedded in a carbon matrix. The ORR performance of the electrocatalyst was tested by rotating disk electrode tests in O2-saturated 0.1 mol/L KOH under ambient conditions. The electrocatalyst (1.0 mg/cm~] showed an onset potential of 1.017 V ([vs. RHE] and a half-wave potential of 0.857 V (vs. RHE], which showed it was as good as the commer- cial Pt/C (20 BgPt/cm2). Furthermore, the electrocatalyst possessed much better stability and re- sistance to methanol crossover than Pt/C. 展开更多
关键词 Fuel cellOxygen reduction reactionNon-precious metal catalystmetal organic frameworkAlkaline condition
下载PDF
Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient,enzyme activity and heavy metal content 被引量:76
14
作者 NING Chuan-chuan GAO Peng-dong +3 位作者 WANG Bing-qing LIN Wei-peng JIANG Ni-hao CAI Kun-zheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第8期1819-1831,共13页
Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmenta... Excessive use of agro-chemicals (such as mineral fertilizers) poses potential risks to soil quality. Application of organic amendments and reduction of inorganic fertilizer are economically feasible and environmentally sound approaches to de- velop sustainable agriculture. This study investigated and evaluated the effects of mineral fertilizer reduction and partial substitution of organic amendment on soil fertility and heavy metal content in a 10-season continually planted vegetable field during 2009-2012. The experiment included four treatments: 100% chemical fertilizer (CF100), 80% chemical fertilizer (CF80), 60% chemical fertilizer and 20% organic fertilizer (CF60+OM20), and 40% chemical fertilizer and 40% organic fertilizer (CF40+OM40). Soil nutrients, enzyme activity and heavy metal content were determined. The results showed that single chemical fertilizer reduction (CF80) had no significant effect on soil organic matter content, soil catalase activity and soil heavy metal content, but slightly reduced soil available N, P, K, and soil urease activity, and significantly reduced soil acid phosphatase activity. Compared with CF100, 40 or 60% reduction of chemical fertilizer supplemented with organic fertilizer (CF60+OM20, CF40+OM40) significantly increased soil organic matter, soil catalase activity and urease activity especially in last several seasons, but reduced soil available P, K, and soil acid phosphatase activity. In addition, continu- ous application of organic fertilizer resulted in higher accumulation of Zn, Cd, and Cr in soil in the late stage of experiment, which may induce adverse effects on soil health and food safety. 展开更多
关键词 chemical fertilizer organic amendments soil fertility VEGETABLE soil health heavy metal
下载PDF
Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids 被引量:27
15
作者 YANG Hong 1, Jongathan W.C.Wong 2, YANG Zhi min\+1, ZHOU Li xiang 1(1. College of Science, Nanjing Agricultural University, Nanjing\ 210095, China. 2. Department of Biology, Hong Kong Baptist University, China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2001年第3期368-375,共8页
Agrogyron elongatum were grown in nutrient solution containing moderate to high amounts of separate heavy metal of Cd, Cu, Ni and Ph in a greenhouse for a 9 - day. Cd, Cu, Ni and Ph generally led to decrease in the el... Agrogyron elongatum were grown in nutrient solution containing moderate to high amounts of separate heavy metal of Cd, Cu, Ni and Ph in a greenhouse for a 9 - day. Cd, Cu, Ni and Ph generally led to decrease in the elongation of roots although the length of seedlings exposed to Cd and Ph at 0.05 and 0.5 mg/L showed to be slightly greater than that of controls. Of the four metals in the experiment, Ph was absorbed and accumulated to the highest level, with the concentrations of 92754 mg/kg dry weight (DW) in roots and 11683 mg/kg DW in shoots. Cd was moderately accumulated in Agrogyron elongatum, but the maximum bioaccumulation coefficients (BCs) for roots and shoots were observed. The patterns for Cu and Ni uptake and distribution in plants differed from those of Ph and Cd, as it was showed that the shoot accumulation of Cu and Ni was significantly higher than in roots. A. elongation had the highest Ni concentration in shoots (30261 mg/kg DW) at the external concentration of 250 mg/L. Cu ranked second, with a shoot concentration of 12230 mg/kg DW when 50 mg/L Cu in solution was applied. For the four trace elements tested, the highest concentrations in shoots decreased by the order of Ni > Cu > Ph > Cd (mg/kg DW), and those in roots were Ph > Cd > Ni > Cu (mg/kg DW). Malic, oxalic and citric acids exuded by roots exposed to 1 and 50 mg/L of the metals were detected. Release of organic acids from plants significantly differed among the metal treatments. Cu was most effectively in inducing root exudation of the three types of organic acids. Cd, and Ni were also the inducers of secretion of malic and oxalic acids. With reference of Pb, a small amounts of malic and oxalic acids were detected in the root exudates, but few quantities, of citric acid were. found. However, no correlation between alternations in root exudation of organic acids and metal accumulation could be established. 展开更多
关键词 heavy metal organic acid Agrogyron elongation HYPERACCUMULATION
下载PDF
Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks 被引量:14
16
作者 Wenwen Zhan Liming Sun Xiguang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期5-32,共28页
Porous structures o er highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic framew... Porous structures o er highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic frameworks(MOFs) have been considered ideal precursors for well-designed semiconductors with porous structures and/or heterostructures, which have shown enhanced photocatalytic activities. In this review, we summarize the recent development of porous structures, such as metal oxides and metal sulfides, and their heterostructures, derived from MOF-based materials as catalysts for various light-driven energy-/environment-related reactions, including water splitting, CO_2 reduction, organic redox reaction, and pollution degradation. A summary and outlook section is also included. 展开更多
关键词 metalorganic frameworks DERIVATIVES POROUS structure PHOTOCATALYSIS
下载PDF
Toxicity assessment of heavy metals and organic compounds using CellSense biosensor with E.coli 被引量:15
17
作者 Hong Wang Xue Jiang Wang Jian Fu Zhao Ling Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第2期211-214,共4页
A new strategy using an arnperometric biosensor with Escherichia coli (E. coli) that provides a rapid toxicity determination of chemical compounds is described. The CellSense biosensor system comprises a biological ... A new strategy using an arnperometric biosensor with Escherichia coli (E. coli) that provides a rapid toxicity determination of chemical compounds is described. The CellSense biosensor system comprises a biological component immobilized in intimate contact with a transducer which converts the biochemical signal into a quantifiable electrical signal. Toxicity assessment of heavy metals using E.coli biosensors could be finished within 30 min and the 50% effective concentrations (ECso) values of four heavy metals were determined. The results shows that inhibitory effects of four heavy metals to E.coli can be ranked in a decreasing order of Hg^2+ 〉 Cu^2+ 〉 Zn^2+ 〉 Ni^2+, which accords to the results of conventional bacterial counting method. The toxicity test of organic compounds by using CellSense biosensor was also demonstrated. The CellSense biosensor with E. coli shows a good, reproducible behavior and can be used for reproducible measurements. 展开更多
关键词 Whole-cell biosensor Heavy metal organic compounds TOXICITY
下载PDF
Co-transport of dissolved organic matter and heavy metals in soils induced by excessive phosphorus applications 被引量:9
18
作者 Mingkui Zhang Huimin Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期598-606,共9页
To evaluate the effects of long-term applications of phosphorus fertilizers on mobility of dissolved organic matter (DOM) and heavy metals in agricultural soils, a sandy soil and a loamy soil were spiked with ammoni... To evaluate the effects of long-term applications of phosphorus fertilizers on mobility of dissolved organic matter (DOM) and heavy metals in agricultural soils, a sandy soil and a loamy soil were spiked with ammonium phosphate at application rates of 0, 25, 50, 100, 250, and 500 mg P per kilogram of soil. A series of 15-cm long soil columns were constructed by packing incubated soils of varying concentrations of P. The soil columns were consecutively leached by simulated rainfalls for six cycles. The contents of water extractable organic carbon in both sandy and loamy soils increased significantly with increasing rates of P applications. Relatively high rates of P applications could induce a marked increase in DOM concentrations in the leachates, the effects were larger with the sandy soil rather than with the loamy soil. Applications of P changed the partitioning of trace metals in the soil solids and the soil solutions. The increased P application rates also seemed to elevate the leaching of Cu, Cd, and Zn from soils. The concentrations of Cu, Cd, and Zn in the leachates were positively correlated with DOM, probably due to the formation of metal-DOM complexes. In contrast, Pb concentrations in the leachates were negatively correlated with DOM, and decreased with increasing rates of P applications. The boosted leaching of DOM induced by high rates of P applications was probably due to the added phosphate ions competing for adsorption sites in the soil solids with the indigenous DOM. 展开更多
关键词 dissolved organic matter heavy metals phosphorus fertilizer LEACHING
下载PDF
Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers 被引量:10
19
作者 Ping Shao Luocai Yi +2 位作者 Shumei Chen Tianhua Zhou Jian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期156-170,I0006,共16页
Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MO... Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework(MOF)and their derived materials have extensively been developed as electrocatalysts for CO2 reduction owing to their unique structure including porosity,large specific surface area,and tunable chemical structures.In this review,the recent progress of MOF-based electrocatalysts for CO2 reduction was summarized and discussed.Detailed discussions mainly focus on the synthesis and mechanism of pristine MOFs and MOF-derived materials for electrocatalytic CO2 reduction.These examples are expected to provide clues to rational design and synthesis of stable and high-performance MOFs-based electrocatalysts for CO2 reduction. 展开更多
关键词 metal organic framework ELECTROCATALYST Carbon dioxides Reduction reaction NANOMATERIALS
下载PDF
Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing 被引量:24
20
作者 Xian Fang Boyang Zong Shun Mao 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期92-110,共19页
Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e.,high sensitivity, high selectivity, and reliability. Metal–o... Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e.,high sensitivity, high selectivity, and reliability. Metal–organic frameworks(MOFs), also known as porous coordination polymers, are a fascinating class of highly ordered crystalline coordination polymers formed by the coordination of metal ions/clusters and organic bridging linkers/ligands. Owing to their unique structures and properties,i.e., high surface area, tailorable pore size, high density of active sites, and high catalytic activity, various MOF-based sensing platforms have been reported for environmental contaminant detection including anions, heavy metal ions,organic compounds, and gases. In this review, recent progress in MOF-based environmental sensors is introduced with a focus on optical, electrochemical, and field-effect transistor sensors. The sensors have shown unique and promising performance in water and gas contaminant sensing. Moreover, by incorporation with other functional materials, MOF-based composites can greatly improve the sensor performance. The current limitations and future directions of MOF-based sensors are also discussed. 展开更多
关键词 metalorganic frameworks Environmental contaminant Optical sensor Electrochemical sensor Field-effect transistor sensor Micro- and nanostructure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部