A field experiment was conducted to investigate the effects of soil amendments(lime,nano-Si foliar solution and used diatomite) on the growth and metal uptake of three maize(Zea mays L.) cultivars grown in a Cd and Zn...A field experiment was conducted to investigate the effects of soil amendments(lime,nano-Si foliar solution and used diatomite) on the growth and metal uptake of three maize(Zea mays L.) cultivars grown in a Cd and Zn-contaminated acidic soil.The addition of lime significantly increased the maize grain yields and decreased the concentrations of Zn and Cd in the grains and shoots of maize when compared with the control.Among the three maize cultivars,Yunshi-5 accumulated the lowest amounts of Cd and Zn in the grain.The concentrations of Zn and Cd in the grain of Yunshi-5 conformed to the Chinese feed standards.These data revealed that a combination of low metal-accumulating maize and chemical fixation could effectively provide a barrier to prevent metals from entering the human food chain.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.40801115 and 41071306)the Science and Technology Planning Project of Guangdong Province,China (Nos.2007A032303001,2009B030802016 and 2010B031800006)
文摘A field experiment was conducted to investigate the effects of soil amendments(lime,nano-Si foliar solution and used diatomite) on the growth and metal uptake of three maize(Zea mays L.) cultivars grown in a Cd and Zn-contaminated acidic soil.The addition of lime significantly increased the maize grain yields and decreased the concentrations of Zn and Cd in the grains and shoots of maize when compared with the control.Among the three maize cultivars,Yunshi-5 accumulated the lowest amounts of Cd and Zn in the grain.The concentrations of Zn and Cd in the grain of Yunshi-5 conformed to the Chinese feed standards.These data revealed that a combination of low metal-accumulating maize and chemical fixation could effectively provide a barrier to prevent metals from entering the human food chain.