The effect of Kovar alloy oxidized in simulated field atmosphere on its sealing with glass was studied in this article. After Kovar plates and pins were preoxidized in N2 with 0℃, 10℃ and 20℃ dew points at 1000℃ f...The effect of Kovar alloy oxidized in simulated field atmosphere on its sealing with glass was studied in this article. After Kovar plates and pins were preoxidized in N2 with 0℃, 10℃ and 20℃ dew points at 1000℃ for different times, Fe304 and Fe203 existed in the oxidation products on Kovar surface, and the quantity of Fe203 increased with increasing dew point and oxidation time. Then they were sealed with borosilicate glass insulator at 1030℃ for 20 rain. The results indicated that the type and quantity of oxidation products would directly influence the quality of glass-to-metal seals. With the increase of oxidation products, gas bubbles in the glass insulator were more serious, the climbing height of glass along the pins was higher, and corrosion of Kovar pins caused from the molten glass was transformed from uniform to the localized.展开更多
The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degrea...The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degreasing for the metal matrix are used to increase bond strength. However, the metal matrix of PFM processed by selective laser melting(SLM) has natural rough surface. To explore the effect of the original roughness on metal-ceramic bond strength, two groups of specimen are fabricated by SLM. One group of specimen surface is polished smooth while another group remains the original rough surface. The dental porcelain is fused to the specimens' surfaces according to the ISO 9693:1999 standard. To gain the bond strength, a three-point bending test is carried out and X ray energy spectrum analysis(EDS), scanning electron microscope(SEM) are used to show fracture mode. The results show that the mean bond strength is 116.5 16 MPa of the group with rough surface(Ra= 17.2), and the fracture mode is cohesive. However, when the surface is smooth (Ra =3.8), the mean bond strength is 74.5 MPa _+ 5 MPa and the fracture mode is mixed. The original surface with prominent structures formed by the partly melted powder particles, not only increases surface roughness but also significantly improves the bond strength by forming strong mechanical lock effect. Statistical analysis (Student's t-test) demonstrates a significant difference (p〈0.05) of the mean value of bond strength between the two groups. The experiments indicate the natural rough surface can enhance the metal-ceramic bond strength to over four times the minimum value (25 MPa) of the ISO 9693:1999 standard. It is found that the natural rough surface of SLM-made PFM can eliminate the porcelain collapse defect produced by traditional casting method in PFM restorations.展开更多
This study investigated the effect of sealing treatment on the corrosion performance of plasma electrolytic oxidation(PEO)coated AZ91D Mg alloy with and without addition of corrosion inhibitor.The microstructure,phase...This study investigated the effect of sealing treatment on the corrosion performance of plasma electrolytic oxidation(PEO)coated AZ91D Mg alloy with and without addition of corrosion inhibitor.The microstructure,phase composition and corrosion property of the sealed and unsealed coatings were evaluated by using scanning electron microscopy(SEM),energy dispersion spectroscopy(EDS),x-ray diffraction(XRD),x-ray photoelectron spectroscopy(XPS),polarization,and electrochemical impedance spectroscopy(EIS)tests.Electrochemical experiments and salt spray tests showed that,after sealing in phosphate solution containing corrosion inhibitor,the corrosion current density of PEO-coated AZ91D decreased more than 10-fold and the anti-corrosion time in a salt spray environment increased more than three-fold.The corrosion rate of the PEO coating slowed down due to the releasing and adsorbing of the corrosion inhibitors in the pores and cracks of the coating during the corrosion process.展开更多
Anodic oxide films of titanium alloy Ti-10V-2Fe-3Al were sealed in calcium acetate solution. The morphology and composition of the sealed films were investigated using scanning electron microscopy (SEM), atomic force ...Anodic oxide films of titanium alloy Ti-10V-2Fe-3Al were sealed in calcium acetate solution. The morphology and composition of the sealed films were investigated using scanning electron microscopy (SEM), atomic force microscope (AFM) and energy dispersive spectroscopy (EDS). The results show that the sealing process makes the anodic oxide films more uniform. Elemental calcium is presented through the whole depth of the anodic oxide films. The roughness of the anodic oxide films is reduced after the sealing process. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to study the corrosion behavior of the anodic oxide films. It is revealed that the sealing process improves the corrosion resistance of the anodic oxide film of titanium alloy Ti-10V-2Fe-3Al.展开更多
Technological process of rare earth sealing anodized LY12 (2024) alloy is introduced. Corrosion behavior of the film was studied by polarization curves and electrochemical impedance spectroscopy (EIS). The results sho...Technological process of rare earth sealing anodized LY12 (2024) alloy is introduced. Corrosion behavior of the film was studied by polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that the coating remained passivity at the potential range from the open circuit potential (-780 mV) to -250 mV in NaCl solution. When the potential exceeded -200 mV, corrosion reaction happened on the coating, the results of EIS analysis was consistent with the results of polarization curves.展开更多
The rare earth sealing procedure of the porous film of anodized aluminum alloy 2024 was studied with the fieldemission scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). The results sho...The rare earth sealing procedure of the porous film of anodized aluminum alloy 2024 was studied with the fieldemission scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). The results show thatRE solution can form cerium oxide/hydroxides precipitation in the pores of the anodized coating at the beginning ofsealing. At the same time, the spherical deposits formed on the surface of the anodized coating created a barrierto the precipitation of RE solution in the pores. When the pore-structured anodizing film is covered all with thespherical deposits, RE conversion coating will form on the surface of the anodized coating. The reaction of thecoating formation was investigated by employing cyclic voltammetry. The results indicate that accelerator H2O2 actsas the source of O2 by carrying chemical reaction in course of coating formation. In the mean time, it maybe carrieselectrochemical reaction to generate alkaline condition to accelerate the coating formation. The porous structure ofthe film is beneficial to the precipitation of the cerium hydroxides film.展开更多
Cerium-based sealing treatment was developed for Mg-Al hydrotalcite film on AZ91D Mg alloy,and the influence of cerium salt solution was investigated to modify the surface integrity and corrosion resistance.Scanning e...Cerium-based sealing treatment was developed for Mg-Al hydrotalcite film on AZ91D Mg alloy,and the influence of cerium salt solution was investigated to modify the surface integrity and corrosion resistance.Scanning electron microscope(SEM)and X-ray diffraction(XRD)measurements were carried out to analyze the surface morphology and phase composition.The corrosion resistance of Mg-Al hydrotalcite film after sealing treatment was evaluated by the polarization curve and electrochemical impedance spectroscopy(EIS)tests.The results showed that lower concentration of Ce-containing solution was beneficial to seal the micro-cracks on Mg-Al hydrotalcite film,and improve the surface integrity and corrosion resistance;higher concentration of Ce-containing solution could seal fewer micro-cracks,and the corrosion resistance was decreased owing to the disintegration of Mg-Al hydrotalcite film.展开更多
The 2024 anodized aluminum alloy film was sealed by KAl(SO_(4))_(2)solution and the effect of sealing on corrosion resistance was investigated by means of potentiodynamic polarization curves,electrochemical impedance ...The 2024 anodized aluminum alloy film was sealed by KAl(SO_(4))_(2)solution and the effect of sealing on corrosion resistance was investigated by means of potentiodynamic polarization curves,electrochemical impedance spectroscopy,and X-ray photoelectron spectroscopy.The experimental results show that the optimal parameters for KAl(SO_(4))_(2)sealing are 35℃,with the pH value of 8,the concentration of 8 g/L,and the sealing time of 3 min.The corrosion resistance of the KAl(SO_(4))_(2)sealed sample can be significantly improved than that of unsealed one,and is obviously superior to that of the conventional hydrothermal sealed sample.Furthermore,X-ray photoelectron spectroscopy demonstrates that more Al(OH)_(3)will be formed in the process of KAl(SO_(4))_(2)sealing,which will shrink the diameter of the microporous and therefore results in the excellent corrosion resistance.展开更多
The oxidation rate,the growth,morphology and structure of oxide scale and whiskers for Fe-Ni-Cr sealing alloys in H_2-H_2O atmosphere at high temperatures have been studied. The growth rate of scale is controlled by d...The oxidation rate,the growth,morphology and structure of oxide scale and whiskers for Fe-Ni-Cr sealing alloys in H_2-H_2O atmosphere at high temperatures have been studied. The growth rate of scale is controlled by diffusion.The scale is composed of Cr_2O_3 and spinel(Fe,Mn)O·Cr_2O_3 and the oxide whisker,are spinel(Fe,Mn)O·Cr_2O_3.展开更多
This paper describes a model of property prediction for alloys using the mapping function and self-learning ability of artificial neural network. By learning from experimental data, the neural network induces the rela...This paper describes a model of property prediction for alloys using the mapping function and self-learning ability of artificial neural network. By learning from experimental data, the neural network induces the relationship between composition, processing and properties of alloys, and predicts the properties with given composition and processing parameters of new alloys.The verification of sealing alloys demonstrates that the artificial neural network is an effective method for materials design and properties prediction.展开更多
Plasma electrochemical oxidation (PEO) is a surface modification technology to form ceramic coatings on magnesium alloys However,its application is limited due to its defects.This work reports a novel preparation of i...Plasma electrochemical oxidation (PEO) is a surface modification technology to form ceramic coatings on magnesium alloys However,its application is limited due to its defects.This work reports a novel preparation of in-situ sealing of PEO coatings by four-layer voltage and sol addition.The morphology and structure were characterized by scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy (EDS),and X-ray diffractometer (XRD).Image-Pro Plus 6.0 was used to determine the porosity of the coating,which was decreased from 8.53%to 0.51%.Simultaneously,the coating thickness was increased by a factor of four.The anti-corrosion performance of each sample was evaluated using electrochemical tests,and the findings revealed that the corrosion current density of coatings (i_(corr)) of the samples were lowered from 9.152×10^(-2) to 6.152×10^(-4) mA·cm^(-2),and the total resistance (R_(T)) of the samples were enhanced from 2.19×10^(4) to 2.33×10^(5)Ω·cm^(2).The salt spray test used to simulate the actual environment showed that corrosion points appeared on the surface of the coating only at the 336 h.In addition,the mechanism of PEO self-sealing behavior was described in this article.展开更多
The oxidation of Kovar alloy was investigated, the wetting and spreading behavior of hard and soft glasses on Kovar alloy were studed by using the sessile drop method, and the quality and the seal strength of glass-Ko...The oxidation of Kovar alloy was investigated, the wetting and spreading behavior of hard and soft glasses on Kovar alloy were studed by using the sessile drop method, and the quality and the seal strength of glass-Kovar seals were tested. The experimental results indicated that the preoxidation of Kovar alloy for approximately 10 min at 700℃ in air resulted in excellent adherence in glass-Kovar seals. The wetting and spreading behavior of glass on preoxidized Kovar alloy were superior to that on nonoxidized Kovar alloy. The wetting ability of ASF110 glass, at 950℃ and 980℃ in Ar and N2 atmospheres, was significantly superior to that of ASF200R and ASF700 glasses. The seal quality of the glass-preoxidized Kovar seal was superior to that of the glass-nonoxidized Kovar seal. The shear strength of the ASFll0 glass-preoxidized Kovar seal, which was prepared at 980℃ for 20 min in an Ar atmosphere, was approximately 3.9 MPa.展开更多
The 40Bi2O3-30B2O3-(30-x)ZnO-xSrO (x=0-15mol%,BBZSr) glass system was prepared by the conventional melt quenching method.The effect of SrO addition on structure,thermal properties,chemical stability and sealing perfor...The 40Bi2O3-30B2O3-(30-x)ZnO-xSrO (x=0-15mol%,BBZSr) glass system was prepared by the conventional melt quenching method.The effect of SrO addition on structure,thermal properties,chemical stability and sealing performance of BBZSr glass were investigated thoroughly.The experimental results show that the total proportions of [BO3] group and [BO4] group decrease and the vibrations of [BiO3] group and [BiO6] group become weaker with the increase of SrO addition content,suggesting the glass network structure is strengthened owing to the SrO addition.Hence,both the thermal and chemical stability were significantly improved as the SrO content was increased.When the SrO content increased from 0 to 15mol%,the glass transition temperature and softening temperature slightly increased from 380 to 388 ℃ and from 392.7 to 402.2 ℃,respectively,meanwhile the coefficient of thermal expansion also increased from 10.49×10^-6 to 11.16×10^-6/℃ (30-300 ℃).The BBZSr glass with 15mol% SrO exhibited excellent comprehensive properties with low glass transition temperature(384.9 ℃),low softening temperature(400.3 ℃),high coefficient of thermal expansion (11.14×10^-6 ℃,30-300 ℃),good thermal and chemical stability.Besides,the glass had the good wetting behavior and sealing performance for Al-50%Si alloy.展开更多
The elimination of toxic materials in sealing methods for anodic films on 1070 aluminum alloy was studied. The new process uses chemical treatments in cerium solution and an electrochemical treatment in a molybdate so...The elimination of toxic materials in sealing methods for anodic films on 1070 aluminum alloy was studied. The new process uses chemical treatments in cerium solution and an electrochemical treatment in a molybdate solution. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) were used to study the influences of sealing methods on the corrosion behavior of anodic films in NaCl solutions. The results show that the Ce-Mo sealing makes the surface structure and morphology of anodic films uniform and compact. Ce and Mo produce a cooperative effect to improve the corrosion resistance of anodic films. Anodic films sealed by Ce-Mo provide high corrosion resistance both in acidic and basic solutions.展开更多
The purpose of the investigation was to create a new gold alloy of yellow for casting the frames of metal ceramic dentures. The yellow color corresponds to the consumer and aesthetic needs of some patients, because it...The purpose of the investigation was to create a new gold alloy of yellow for casting the frames of metal ceramic dentures. The yellow color corresponds to the consumer and aesthetic needs of some patients, because it is a sign of the metal, which is noble and innocuous. The main alloying elements of the majority of gold alloys for metal-ceramics are platinum and palladium, which increase the strength characteristics. Copper, tin, and other precious metals and base metals are also introduced in these alloys. At the same time, it is necessary to ensure the correspondence of the properties of the alloy with those of the ceramics applied onto the metal frame. For this purpose, the thermal expansion coefficient of the alloy (TEC) should be in a range of 13.5~14.5 ×10 6 K 1 when heated from 20 to 600 ℃ . The two-component alloys, alloying of gold with platinum and palladium results in a decrease in the TEC, and the introduction of copper, silver, and tin, increases it. Multidirectional influence of the alloying elements is a factor in achieving compliance of the TEC with the given values of the alloy. In multicomponent systems, however, the mutual influence of individual components on the properties of the alloy is unpredictable. This also applies to the color characteristics of the alloys, which vary in the direction of reducing the yellowness with increasing concentration of platinum and palladium, while other elements may have the opposite effect on the results. Yellowness index (YI), calculated according to the results of spectrophotometric studies, has been chosen as an objective indicator of color. In this study, the requirement for YI was given not less than 25; the color of such alloys can be called light yellow. All the alloys investigated contained 85% (by weight) of gold. Therefore, higher corrosion resistance and biological inertness of a finished dental products were ensured. Among the alloys that met the yellowness/TEC requirements, two alloys have been selected that were 'most yellow' (PLAGODENT-PLUS and PLAGODENT-BIO). Their adhesive properties met the requirements of GOST R 51736-2001 to alloys for metal ceramics.展开更多
文摘The effect of Kovar alloy oxidized in simulated field atmosphere on its sealing with glass was studied in this article. After Kovar plates and pins were preoxidized in N2 with 0℃, 10℃ and 20℃ dew points at 1000℃ for different times, Fe304 and Fe203 existed in the oxidation products on Kovar surface, and the quantity of Fe203 increased with increasing dew point and oxidation time. Then they were sealed with borosilicate glass insulator at 1030℃ for 20 rain. The results indicated that the type and quantity of oxidation products would directly influence the quality of glass-to-metal seals. With the increase of oxidation products, gas bubbles in the glass insulator were more serious, the climbing height of glass along the pins was higher, and corrosion of Kovar pins caused from the molten glass was transformed from uniform to the localized.
基金supported by the Royal Academy of Engineering Research Exchanges with China and UK(Grant No.2012-P02)National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2012BAF08B03)National Natural Science Foundation of China(Grant No.51375189)
文摘The porcelain fracture caused by low metal-ceramic bond strength is a critical issue in porcelain fused to metal(PFM) restorations. Surface roughening methods, such as sand blasting, acid etching and alkaline degreasing for the metal matrix are used to increase bond strength. However, the metal matrix of PFM processed by selective laser melting(SLM) has natural rough surface. To explore the effect of the original roughness on metal-ceramic bond strength, two groups of specimen are fabricated by SLM. One group of specimen surface is polished smooth while another group remains the original rough surface. The dental porcelain is fused to the specimens' surfaces according to the ISO 9693:1999 standard. To gain the bond strength, a three-point bending test is carried out and X ray energy spectrum analysis(EDS), scanning electron microscope(SEM) are used to show fracture mode. The results show that the mean bond strength is 116.5 16 MPa of the group with rough surface(Ra= 17.2), and the fracture mode is cohesive. However, when the surface is smooth (Ra =3.8), the mean bond strength is 74.5 MPa _+ 5 MPa and the fracture mode is mixed. The original surface with prominent structures formed by the partly melted powder particles, not only increases surface roughness but also significantly improves the bond strength by forming strong mechanical lock effect. Statistical analysis (Student's t-test) demonstrates a significant difference (p〈0.05) of the mean value of bond strength between the two groups. The experiments indicate the natural rough surface can enhance the metal-ceramic bond strength to over four times the minimum value (25 MPa) of the ISO 9693:1999 standard. It is found that the natural rough surface of SLM-made PFM can eliminate the porcelain collapse defect produced by traditional casting method in PFM restorations.
基金the National Natural Science Foundation of China(No.U1737102,51531007,51371059)Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)+3 种基金Guangxi Natural Science Foundation of China(Nos.2016GXNSFDA380022)Major Science and Technology Projects in Guangxi(No.AA18118030 and AA17204100)Project of Development of Science and Technology of Nanning(No.20181191-2)the Fundamental Research Funds for the Central Universities(N170203006).
文摘This study investigated the effect of sealing treatment on the corrosion performance of plasma electrolytic oxidation(PEO)coated AZ91D Mg alloy with and without addition of corrosion inhibitor.The microstructure,phase composition and corrosion property of the sealed and unsealed coatings were evaluated by using scanning electron microscopy(SEM),energy dispersion spectroscopy(EDS),x-ray diffraction(XRD),x-ray photoelectron spectroscopy(XPS),polarization,and electrochemical impedance spectroscopy(EIS)tests.Electrochemical experiments and salt spray tests showed that,after sealing in phosphate solution containing corrosion inhibitor,the corrosion current density of PEO-coated AZ91D decreased more than 10-fold and the anti-corrosion time in a salt spray environment increased more than three-fold.The corrosion rate of the PEO coating slowed down due to the releasing and adsorbing of the corrosion inhibitors in the pores and cracks of the coating during the corrosion process.
基金Project(51171011)supported by the National Natural Science Foundation of China
文摘Anodic oxide films of titanium alloy Ti-10V-2Fe-3Al were sealed in calcium acetate solution. The morphology and composition of the sealed films were investigated using scanning electron microscopy (SEM), atomic force microscope (AFM) and energy dispersive spectroscopy (EDS). The results show that the sealing process makes the anodic oxide films more uniform. Elemental calcium is presented through the whole depth of the anodic oxide films. The roughness of the anodic oxide films is reduced after the sealing process. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to study the corrosion behavior of the anodic oxide films. It is revealed that the sealing process improves the corrosion resistance of the anodic oxide film of titanium alloy Ti-10V-2Fe-3Al.
基金This work has been carried out with the support of the Chinese Postdoctoral Science Fund and the Special Funds for the Major State Basic Research Projects G19990650.
文摘Technological process of rare earth sealing anodized LY12 (2024) alloy is introduced. Corrosion behavior of the film was studied by polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that the coating remained passivity at the potential range from the open circuit potential (-780 mV) to -250 mV in NaCl solution. When the potential exceeded -200 mV, corrosion reaction happened on the coating, the results of EIS analysis was consistent with the results of polarization curves.
基金This work has been carried out with the support of The Chinese Postdoctoral Science FundThe Special Funds for the Major State Basic Research Projects G19990650.
文摘The rare earth sealing procedure of the porous film of anodized aluminum alloy 2024 was studied with the fieldemission scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS). The results show thatRE solution can form cerium oxide/hydroxides precipitation in the pores of the anodized coating at the beginning ofsealing. At the same time, the spherical deposits formed on the surface of the anodized coating created a barrierto the precipitation of RE solution in the pores. When the pore-structured anodizing film is covered all with thespherical deposits, RE conversion coating will form on the surface of the anodized coating. The reaction of thecoating formation was investigated by employing cyclic voltammetry. The results indicate that accelerator H2O2 actsas the source of O2 by carrying chemical reaction in course of coating formation. In the mean time, it maybe carrieselectrochemical reaction to generate alkaline condition to accelerate the coating formation. The porous structure ofthe film is beneficial to the precipitation of the cerium hydroxides film.
基金supported by the National Natural Science Foundation of China(No.51701093)the Natural Science Foundation of Jiangsu Province(No.BK20170764)+2 种基金the Six Talent Peaks(No.2015-XCL-025)the Qing Lan Project of Jiangsu Province,the Practice Innovation Program for graduate students of Jiangsu Province(No.SJZZ16_0292)the Research Fund of Nanjing Institute of Technology(No.JCYJ201603).
文摘Cerium-based sealing treatment was developed for Mg-Al hydrotalcite film on AZ91D Mg alloy,and the influence of cerium salt solution was investigated to modify the surface integrity and corrosion resistance.Scanning electron microscope(SEM)and X-ray diffraction(XRD)measurements were carried out to analyze the surface morphology and phase composition.The corrosion resistance of Mg-Al hydrotalcite film after sealing treatment was evaluated by the polarization curve and electrochemical impedance spectroscopy(EIS)tests.The results showed that lower concentration of Ce-containing solution was beneficial to seal the micro-cracks on Mg-Al hydrotalcite film,and improve the surface integrity and corrosion resistance;higher concentration of Ce-containing solution could seal fewer micro-cracks,and the corrosion resistance was decreased owing to the disintegration of Mg-Al hydrotalcite film.
基金Funded by the National Natural Science Foundation of China(No.12175107)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(No.NY220030)
文摘The 2024 anodized aluminum alloy film was sealed by KAl(SO_(4))_(2)solution and the effect of sealing on corrosion resistance was investigated by means of potentiodynamic polarization curves,electrochemical impedance spectroscopy,and X-ray photoelectron spectroscopy.The experimental results show that the optimal parameters for KAl(SO_(4))_(2)sealing are 35℃,with the pH value of 8,the concentration of 8 g/L,and the sealing time of 3 min.The corrosion resistance of the KAl(SO_(4))_(2)sealed sample can be significantly improved than that of unsealed one,and is obviously superior to that of the conventional hydrothermal sealed sample.Furthermore,X-ray photoelectron spectroscopy demonstrates that more Al(OH)_(3)will be formed in the process of KAl(SO_(4))_(2)sealing,which will shrink the diameter of the microporous and therefore results in the excellent corrosion resistance.
文摘The oxidation rate,the growth,morphology and structure of oxide scale and whiskers for Fe-Ni-Cr sealing alloys in H_2-H_2O atmosphere at high temperatures have been studied. The growth rate of scale is controlled by diffusion.The scale is composed of Cr_2O_3 and spinel(Fe,Mn)O·Cr_2O_3 and the oxide whisker,are spinel(Fe,Mn)O·Cr_2O_3.
文摘This paper describes a model of property prediction for alloys using the mapping function and self-learning ability of artificial neural network. By learning from experimental data, the neural network induces the relationship between composition, processing and properties of alloys, and predicts the properties with given composition and processing parameters of new alloys.The verification of sealing alloys demonstrates that the artificial neural network is an effective method for materials design and properties prediction.
基金financially supported by the Guangxi Natural Science Foundation(No.2020GXNSFAA159011)the National Natural Science Foundation of China(No.51664011)。
文摘Plasma electrochemical oxidation (PEO) is a surface modification technology to form ceramic coatings on magnesium alloys However,its application is limited due to its defects.This work reports a novel preparation of in-situ sealing of PEO coatings by four-layer voltage and sol addition.The morphology and structure were characterized by scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy (EDS),and X-ray diffractometer (XRD).Image-Pro Plus 6.0 was used to determine the porosity of the coating,which was decreased from 8.53%to 0.51%.Simultaneously,the coating thickness was increased by a factor of four.The anti-corrosion performance of each sample was evaluated using electrochemical tests,and the findings revealed that the corrosion current density of coatings (i_(corr)) of the samples were lowered from 9.152×10^(-2) to 6.152×10^(-4) mA·cm^(-2),and the total resistance (R_(T)) of the samples were enhanced from 2.19×10^(4) to 2.33×10^(5)Ω·cm^(2).The salt spray test used to simulate the actual environment showed that corrosion points appeared on the surface of the coating only at the 336 h.In addition,the mechanism of PEO self-sealing behavior was described in this article.
文摘The oxidation of Kovar alloy was investigated, the wetting and spreading behavior of hard and soft glasses on Kovar alloy were studed by using the sessile drop method, and the quality and the seal strength of glass-Kovar seals were tested. The experimental results indicated that the preoxidation of Kovar alloy for approximately 10 min at 700℃ in air resulted in excellent adherence in glass-Kovar seals. The wetting and spreading behavior of glass on preoxidized Kovar alloy were superior to that on nonoxidized Kovar alloy. The wetting ability of ASF110 glass, at 950℃ and 980℃ in Ar and N2 atmospheres, was significantly superior to that of ASF200R and ASF700 glasses. The seal quality of the glass-preoxidized Kovar seal was superior to that of the glass-nonoxidized Kovar seal. The shear strength of the ASFll0 glass-preoxidized Kovar seal, which was prepared at 980℃ for 20 min in an Ar atmosphere, was approximately 3.9 MPa.
基金the Open Project Program of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(No.KLIFMD-2018-06)。
文摘The 40Bi2O3-30B2O3-(30-x)ZnO-xSrO (x=0-15mol%,BBZSr) glass system was prepared by the conventional melt quenching method.The effect of SrO addition on structure,thermal properties,chemical stability and sealing performance of BBZSr glass were investigated thoroughly.The experimental results show that the total proportions of [BO3] group and [BO4] group decrease and the vibrations of [BiO3] group and [BiO6] group become weaker with the increase of SrO addition content,suggesting the glass network structure is strengthened owing to the SrO addition.Hence,both the thermal and chemical stability were significantly improved as the SrO content was increased.When the SrO content increased from 0 to 15mol%,the glass transition temperature and softening temperature slightly increased from 380 to 388 ℃ and from 392.7 to 402.2 ℃,respectively,meanwhile the coefficient of thermal expansion also increased from 10.49×10^-6 to 11.16×10^-6/℃ (30-300 ℃).The BBZSr glass with 15mol% SrO exhibited excellent comprehensive properties with low glass transition temperature(384.9 ℃),low softening temperature(400.3 ℃),high coefficient of thermal expansion (11.14×10^-6 ℃,30-300 ℃),good thermal and chemical stability.Besides,the glass had the good wetting behavior and sealing performance for Al-50%Si alloy.
基金Project(50571006) supported by the National Natural Science Foundation of China
文摘The elimination of toxic materials in sealing methods for anodic films on 1070 aluminum alloy was studied. The new process uses chemical treatments in cerium solution and an electrochemical treatment in a molybdate solution. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) were used to study the influences of sealing methods on the corrosion behavior of anodic films in NaCl solutions. The results show that the Ce-Mo sealing makes the surface structure and morphology of anodic films uniform and compact. Ce and Mo produce a cooperative effect to improve the corrosion resistance of anodic films. Anodic films sealed by Ce-Mo provide high corrosion resistance both in acidic and basic solutions.
文摘The purpose of the investigation was to create a new gold alloy of yellow for casting the frames of metal ceramic dentures. The yellow color corresponds to the consumer and aesthetic needs of some patients, because it is a sign of the metal, which is noble and innocuous. The main alloying elements of the majority of gold alloys for metal-ceramics are platinum and palladium, which increase the strength characteristics. Copper, tin, and other precious metals and base metals are also introduced in these alloys. At the same time, it is necessary to ensure the correspondence of the properties of the alloy with those of the ceramics applied onto the metal frame. For this purpose, the thermal expansion coefficient of the alloy (TEC) should be in a range of 13.5~14.5 ×10 6 K 1 when heated from 20 to 600 ℃ . The two-component alloys, alloying of gold with platinum and palladium results in a decrease in the TEC, and the introduction of copper, silver, and tin, increases it. Multidirectional influence of the alloying elements is a factor in achieving compliance of the TEC with the given values of the alloy. In multicomponent systems, however, the mutual influence of individual components on the properties of the alloy is unpredictable. This also applies to the color characteristics of the alloys, which vary in the direction of reducing the yellowness with increasing concentration of platinum and palladium, while other elements may have the opposite effect on the results. Yellowness index (YI), calculated according to the results of spectrophotometric studies, has been chosen as an objective indicator of color. In this study, the requirement for YI was given not less than 25; the color of such alloys can be called light yellow. All the alloys investigated contained 85% (by weight) of gold. Therefore, higher corrosion resistance and biological inertness of a finished dental products were ensured. Among the alloys that met the yellowness/TEC requirements, two alloys have been selected that were 'most yellow' (PLAGODENT-PLUS and PLAGODENT-BIO). Their adhesive properties met the requirements of GOST R 51736-2001 to alloys for metal ceramics.