Metal-core piezoelectric fibers (MPFs) are one of the new type piezoelectric devices. To investigate the piezoelectricity and the mechanical properties of the piezoelectric fibers, the constitutive equations are est...Metal-core piezoelectric fibers (MPFs) are one of the new type piezoelectric devices. To investigate the piezoelectricity and the mechanical properties of the piezoelectric fibers, the constitutive equations are established. It can describe the response of piezoelectric fibers subject to an axial force and an external voltage. A cantilever bar subject to a tip axial force and an external voltage on the electrodes is considered. The internal energy density in thermodynamic equilibrium is obtained. The total internal energy is calculated by integrating over the entire volume of the bar. The generalized displacement of the tip axial force is the tip elongation δ, and the generalized displacement of the voltage is the electrical charge Q on the electrodes. In the established constitutive equations, the excitation (input) parameters are the axial force and the external voltage, the response (output) parameters are the tip elongation and the electric charge. And the response parameters are related to the excitation parameters by a 2× 2 piezoelectric matrix. Finally, two experiments using MPF as a sensor or an actuator are performed to verify the constitutive equations. And experimental results are compared with analytical ones.展开更多
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ...Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.展开更多
The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectr...The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectric performance are fabricated by dry-spinning and post-treatment.The concentration of SF and calcium ion in spinning dope and the post-treatment affect the conformation transition and crystallinity of SF.As a result,the SF fibers exhibit high piezoelectric coefficient d_(33)(3.24 pm/V)and output voltage(~27 V).Furthermore,these piezoelectric fibers promote the growth of PC-12 cells,demonstrating the promising potential for nerve repair and other energy harvester.展开更多
Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelec...Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites,and show superior properties to monolithic piezoelectric wafer due to their distinctive structures.Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods.Various applications have been explored for the piezoelectric fiber composites,including vibration and noise control,health monitoring,morphing of structures and energy harvesting,in which the composites play key role and demonstrate the necessity for further development.展开更多
Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are der...Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.展开更多
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforc...This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.展开更多
Based on both the spring layer interface model and the Gurtin-Murdoch surface/interface model,the anti-plane shear problem is studied for piezoelectric composites containing coated nano-elliptical fibers with imperfec...Based on both the spring layer interface model and the Gurtin-Murdoch surface/interface model,the anti-plane shear problem is studied for piezoelectric composites containing coated nano-elliptical fibers with imperfect interfaces.By using the complex function method and the technique of conformal mapping,the exact solutions of the electroelastic fields in fiber,coating,and matrix of piezoelectric nanocomposites are derived under far-field anti-plane mechanical and in-plane electrical loads.Furthermore,the generalized self-consistent method is used to accurately predict the effective electroelastic moduli of the piezoelectric nanocomposites containing coated nano-elliptical fibers with imperfect interfaces.Numerical examples are illustrated to show the effects of the material constants of the imperfect interface layers,the aspect ratio of the fiber section,and the fiber volume fraction on the effective electroelastic moduli of the piezoelectric nanocomposites.The results indicate that the effective electroelastic moduli of the piezoelectric nanocomposites can be significantly reduced by the interfacial debonding,but it can be improved by the surface/interface stresses at the small scale,which provides important theoretical reference for the design and optimization of piezoelectric nanodevices and nanostructures.展开更多
The mechanical structure of piezoelectric accelerometer is designed, and the operation equations on X , Y , and Z axes are deduced. The test results of 3 D frequency response are given. Noise disturbances are effectiv...The mechanical structure of piezoelectric accelerometer is designed, and the operation equations on X , Y , and Z axes are deduced. The test results of 3 D frequency response are given. Noise disturbances are effectively eliminated by using fiber optic transmission and synchronous detection.展开更多
Crickets, similar to some other insects, have highly sensitive filiform hairs on their cerci that can detect miniscule changes in airflow. This study imitates the perception mechanism of these filiform sensory hairs o...Crickets, similar to some other insects, have highly sensitive filiform hairs on their cerci that can detect miniscule changes in airflow. This study imitates the perception mechanism of these filiform sensory hairs of crickets by designing and fabricating a Multi-electrode Metal Core Piezoelectric Fiber (MMPF)-based airflow sensor. Four longitudinal conductive sheets were coated symmetrically on their surfaces with Metal-core Piezoceramic Fibers (MPF). The four fan-shaped piezoelectric ceramics with surface electrode covers were polarized. After successful polarization, the cantilevered MMPF could be used as an airflow sensor. The four electrodes on the surface were symmetrically divided into two groups. Therefore, two signals can be produced by a single fiber sensor. The theoretical model of an MMPF airflow sensor has been established. The model indicates that the ratio of the two signals is equivalent to the tangent of the airflow angle. Furthermore, the sum of the squares of the two signals is not dependent on the angle, but reflects the velocity of the airflow. Therefore, a single MMPF can be used to measure both the direction and amplitude for a given airflow. The theoretical model has been confirmed via experimental measurements.展开更多
Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D fl...Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D flexible coaxial piezoelectric fiber was directly fabricated by melt extrusion molding,whose core and sheath layer are respectively slender steel wire(i.e.,electrode)and PVDF(i.e.,piezoelectric layer).Moreover,such 1D flexible coaxial piezoelectric fiber possesses short response time and high sensitivity,which can be used as a selfpowered sensor for bending and vibration sensing.More interestingly,such 1D flexible coaxial piezoelectric fiber(1D-PFs)can be further endowed with 3D helical structure.Moreover,a wearable and washable motion monitoring system can be constructed via braiding such 3D helical piezoelectric fiber(3D-PF)into commercial textiles.This work paves a new way for developing 1D and 3D piezoelectric fibers through a one-step,continuous and environmentally friendly method,showing potential applications in the field of sensing and wearable electronics.展开更多
基金the National High Technology Research and Development Program of China(863Pro-gram)(2007AA03Z104)~~
文摘Metal-core piezoelectric fibers (MPFs) are one of the new type piezoelectric devices. To investigate the piezoelectricity and the mechanical properties of the piezoelectric fibers, the constitutive equations are established. It can describe the response of piezoelectric fibers subject to an axial force and an external voltage. A cantilever bar subject to a tip axial force and an external voltage on the electrodes is considered. The internal energy density in thermodynamic equilibrium is obtained. The total internal energy is calculated by integrating over the entire volume of the bar. The generalized displacement of the tip axial force is the tip elongation δ, and the generalized displacement of the voltage is the electrical charge Q on the electrodes. In the established constitutive equations, the excitation (input) parameters are the axial force and the external voltage, the response (output) parameters are the tip elongation and the electric charge. And the response parameters are related to the excitation parameters by a 2× 2 piezoelectric matrix. Finally, two experiments using MPF as a sensor or an actuator are performed to verify the constitutive equations. And experimental results are compared with analytical ones.
基金Project supported by the National Natural Science Foundation of China (Nos.12172326 and 11972319)the National Key Research and Development Program of China (No.2020YFA0711700)the Natural Science Foundation of Zhejiang Province of China (No.LR21A020002)。
文摘Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.
基金Project sponsored by the Basic Research Project of the Science and Technology Commission of Shanghai Municipality (Grant No.21JC1400100)the Shanghai Rising-Star Program (Grant No.22QA1400400)+1 种基金the National Natural Science Foundation of China (Grant No.52173031)the Oriental Talent Plan (Leading Talent Program,No.152)。
文摘The self-powered tissue engineering scaffold with good biocompatibility is of great significance for stimulating nerve cell growth.In this study,silk fibroin(SF)-based fibers with regulatable structure and piezoelectric performance are fabricated by dry-spinning and post-treatment.The concentration of SF and calcium ion in spinning dope and the post-treatment affect the conformation transition and crystallinity of SF.As a result,the SF fibers exhibit high piezoelectric coefficient d_(33)(3.24 pm/V)and output voltage(~27 V).Furthermore,these piezoelectric fibers promote the growth of PC-12 cells,demonstrating the promising potential for nerve repair and other energy harvester.
基金Project(51072235) supported by the National Natural Science Foundation of ChinaProject(11JJ1008) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(20110162110044) supported by the PhD Program Foundation of Ministry of Education of ChinaProject(7433001207) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2001JF3215) supported by Hunan Provincial Science and Technology Plan,China
文摘Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites,and show superior properties to monolithic piezoelectric wafer due to their distinctive structures.Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods.Various applications have been explored for the piezoelectric fiber composites,including vibration and noise control,health monitoring,morphing of structures and energy harvesting,in which the composites play key role and demonstrate the necessity for further development.
基金supported by the National Natural Science Foundation of China(Nos.11702251,12002316)。
文摘Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.
文摘This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.
基金supported by the National Natural Science Foundation of China(Nos.12072166 and 11862021)the Program for Science and Technology of Inner Mongolia Autonomous Region of China(No.2021GG0254)+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2020MS01006)the Independent Research Key Program of Center for Applied Mathematics of Inner Mongolia Autonomous Region of China(No.ZZYJZD2022002)。
文摘Based on both the spring layer interface model and the Gurtin-Murdoch surface/interface model,the anti-plane shear problem is studied for piezoelectric composites containing coated nano-elliptical fibers with imperfect interfaces.By using the complex function method and the technique of conformal mapping,the exact solutions of the electroelastic fields in fiber,coating,and matrix of piezoelectric nanocomposites are derived under far-field anti-plane mechanical and in-plane electrical loads.Furthermore,the generalized self-consistent method is used to accurately predict the effective electroelastic moduli of the piezoelectric nanocomposites containing coated nano-elliptical fibers with imperfect interfaces.Numerical examples are illustrated to show the effects of the material constants of the imperfect interface layers,the aspect ratio of the fiber section,and the fiber volume fraction on the effective electroelastic moduli of the piezoelectric nanocomposites.The results indicate that the effective electroelastic moduli of the piezoelectric nanocomposites can be significantly reduced by the interfacial debonding,but it can be improved by the surface/interface stresses at the small scale,which provides important theoretical reference for the design and optimization of piezoelectric nanodevices and nanostructures.
文摘The mechanical structure of piezoelectric accelerometer is designed, and the operation equations on X , Y , and Z axes are deduced. The test results of 3 D frequency response are given. Noise disturbances are effectively eliminated by using fiber optic transmission and synchronous detection.
基金This research was supported by the Nationa Natural Science Foundation of China (Grant No 51275447).
文摘Crickets, similar to some other insects, have highly sensitive filiform hairs on their cerci that can detect miniscule changes in airflow. This study imitates the perception mechanism of these filiform sensory hairs of crickets by designing and fabricating a Multi-electrode Metal Core Piezoelectric Fiber (MMPF)-based airflow sensor. Four longitudinal conductive sheets were coated symmetrically on their surfaces with Metal-core Piezoceramic Fibers (MPF). The four fan-shaped piezoelectric ceramics with surface electrode covers were polarized. After successful polarization, the cantilevered MMPF could be used as an airflow sensor. The four electrodes on the surface were symmetrically divided into two groups. Therefore, two signals can be produced by a single fiber sensor. The theoretical model of an MMPF airflow sensor has been established. The model indicates that the ratio of the two signals is equivalent to the tangent of the airflow angle. Furthermore, the sum of the squares of the two signals is not dependent on the angle, but reflects the velocity of the airflow. Therefore, a single MMPF can be used to measure both the direction and amplitude for a given airflow. The theoretical model has been confirmed via experimental measurements.
基金the National Natural Science Foundation of China(No.51873199)Program for Innovative Research Team(in Science and Technology)in University(No.20IRTSTHN002)。
文摘Although there has been rapid advancement in piezoelectric sensors,challenges still remain in developing wearable piezoelectric sensors by a one-step,continuous and environmentally friendly method.In this work,a 1D flexible coaxial piezoelectric fiber was directly fabricated by melt extrusion molding,whose core and sheath layer are respectively slender steel wire(i.e.,electrode)and PVDF(i.e.,piezoelectric layer).Moreover,such 1D flexible coaxial piezoelectric fiber possesses short response time and high sensitivity,which can be used as a selfpowered sensor for bending and vibration sensing.More interestingly,such 1D flexible coaxial piezoelectric fiber(1D-PFs)can be further endowed with 3D helical structure.Moreover,a wearable and washable motion monitoring system can be constructed via braiding such 3D helical piezoelectric fiber(3D-PF)into commercial textiles.This work paves a new way for developing 1D and 3D piezoelectric fibers through a one-step,continuous and environmentally friendly method,showing potential applications in the field of sensing and wearable electronics.