期刊文献+
共找到1,692篇文章
< 1 2 85 >
每页显示 20 50 100
Anti-explosion performance and dynamic response of an innovative multi-layer composite explosion containment vessel
1
作者 Zhen Wang Heng Chen +3 位作者 Qi Yuan Wenbin Gu Xingbo Xie Hongwei Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期105-121,共17页
An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional sing... An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional single-layer explosion containment vessel(SECV).Firstly,a series of experiments and finite element(FE)simulations of internal explosions are implemented to understand the basic anti-explosion characteristics of a SECV and the rationality of the computational models and methods is verified by the comparison between the experimental results and simulation results.Based on this,the CECV is designed in detail and a variety of FE simulations are carried out to investigate effects of the sandwich structure,the explosive quantity and the laying mode of the fiber cloth on anti-explosion performance and dynamic response of the CECV under internal explosions.Simulation results indicate that the end cover is the critical position for both the SECV and CECV.The maximum pressure of the explosion shock wave and the maximum strain of the CECV can be extremely declined compared to those of the SECV.As a result,the explosive quantity the CECV can sustain is up to 20 times of that the SECV can sustain.Besides,as the explosive quantity increases,the internal pressure of the CECV keeps growing and the plastic deformation and failure of the sandwich structure become more and more severe,yielding plastic strain of the CECV in addition to elastic strain.The results also reveal that the laying angles of the fiber cloth's five layers have an impact on the anti-explosion performance of the CECV.For example,the CECV with fiber cloth layered in 0°/45°/90°/45°/0°mode has the optimal anti-capacity,compared to 0°/0°/0°/0°/0°and 0°/30°/60°/30°/0°modes.Overall,owing to remarkable anti-explosion capacity,this CECV can be regarded as a promising candidate for explosion resistance. 展开更多
关键词 Explosive container Honeycomb-fiber cloth ANTI-EXPLOSION Aluminum honeycomb core composite
下载PDF
PARTICULATE SIZE EFFECTS IN THE PARTICLE-REINFORCED METAL-MATRIX COMPOSITES 被引量:13
2
作者 魏悦广 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期45-58,共14页
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly u... The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted. 展开更多
关键词 size effect strain gradient plasticity the particle-reinforced metal-matrix composite
下载PDF
GO/MgO/Mg interface mediated strengthening and electromagnetic interference shielding in AZ31 composite
3
作者 Z.Y.Xu C.F.Fang +4 位作者 C.J.Li R.Wang X.P.Zhang J.Tan Y.M.Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3800-3814,共15页
More requirements of electromagnetic interference(EMI) shielding performance are put forward for lightweight structural materials due to the development of aerospace and 5G communications. Herein, graphene oxide(GO) d... More requirements of electromagnetic interference(EMI) shielding performance are put forward for lightweight structural materials due to the development of aerospace and 5G communications. Herein, graphene oxide(GO) decorated with SnO_(2) coating is introduced as reinforcement into AZ31 Mg alloy. During the smelting process, the MgO layer is in situ gernerated at interface between GO and the molten Mg alloy matrix by consuming SnO_(2). In the solid state, such kind of interface structure can improve the GO-Mg interface bonding intensity,also significantly generate stacking faults. The AZ31 composite reinfoced by trace modified GO(0.1 wt%) exhibits high ultimate strength and almost the same elongation with AZ31 alloy. Compared with AZ31 alloy, the yield strength and ultimate tensile strength of composite are increased by 33.5% and 23.7%, respectively. Meanwhile, the multi-level electromagnetic reflection from the multi-layer structure of GO and the interface polarization caused by the MgO mid-layer can significantly improve EMI shielding performance. The appropriate interface design strategy achieves the effect of “two birds with one stone”. 展开更多
关键词 metal-matrix composites Mechanical properties EMI shielding MICROSTRUCTURES
下载PDF
Impact damage behavior of sandwich composite with aluminum foam core 被引量:4
4
作者 Moon Sik HAN Jae Ung CHO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第S1期42-46,共5页
Impact property of the sandwich composite with aluminum foam core was investigated by experiment and simulation analysis. Impact energies of 50, 70 and 100 J were applied to the specimens in impact tests. The results ... Impact property of the sandwich composite with aluminum foam core was investigated by experiment and simulation analysis. Impact energies of 50, 70 and 100 J were applied to the specimens in impact tests. The results show that the striker penetrates the upper face sheet, causing the core to be damaged at 50 J test but the lower face sheet remains intact with no damage. At 70 J test, the striker penetrates the upper face sheet and the core,and causes the lower face sheet to be damaged. Finally at 100 J test, the striker penetrates both the upper face sheet and the core, and even the lower face sheet. The experimental and simulation results agree with each other. By the confirmation with the experimental results, all these simulation results can be applied on structure study of real sandwich composite with aluminum foam core effectively. 展开更多
关键词 sandwich composite aluminum foam core impact energy maximum load
下载PDF
In-depth analysis of the influence of bio-silica filler(Didymosphenia geminata frustules)on the properties of Mg matrix composites
5
作者 Izabela B.Zgłobicka Anna Dobkowska +12 位作者 Aleksandra Zielińska Ewa Borucinska Mirosław J.Kruszewski RafałZybała Tomasz Płociński Joanna Idaszek Jakub Jaroszewicz Krystian Paradowski Bogusława Adamczyk-Cieślak Kostiantyn Nikiforow Bartosz Bucholc WojciechŚwięszkowski Krzysztof J.Kurzydłowski 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2853-2871,共19页
A novel metal matrix composites(MMC)with Mg matrix reinforced with natural filler in the form of Didymosphenia geminata frustules(algae with distinctive siliceous shells)are presented in this work.Pulse plasma sinteri... A novel metal matrix composites(MMC)with Mg matrix reinforced with natural filler in the form of Didymosphenia geminata frustules(algae with distinctive siliceous shells)are presented in this work.Pulse plasma sintering(PPS)was used to manufacture Mg-based composites with 1,5 and 10 vol.%ceramic filler.As a reference,pure Mg was sintered.The results show that the addition of 1 vol.%Didymosphenia geminata frustules to the Mg matrix increases its corrosion resistance by supporting passivation reactions,and do not affect the morphology of L929 fibroblasts.Addition of 5 vol.%the filler does not cause cytotoxic effects,but it supports microgalvanic reactions leading to the greater corrosion rate.Higher content than 5 vol.%the filler causes significant microgalvanic corrosion,as well as increases cytotoxicity due to the greater micro-galvanic effect of the composites containing 10 and 15 vol.%diatoms.The results of contact angle measurements show the hydrophilic character of the investigated materials,with slightly increase in numerical values with addition of amount of ceramic reinforcement.The addition of Didymosphenia geminata frustules causes changes in a thermo-elastic properties such as mean apparent value of coefficient of thermal expansion(CTE)and thermal conductivity(λ).The addition of siliceous reinforcement resulted in a linear decrease of CTE and reduction in thermal conductivity over the entire temperature range.With the increasing addition of Didymosphenia geminata frustules,an increase in strength with a decrease in compressive strain is observed.In all composites an increase in microhardness was attained.The results clearly indicate that filler in the form of Didymosphenia geminata frustules may significantly change the most important properties of pure Mg,indicating its wide potential in the application of Mg-based composites with a special focus on biomedical use. 展开更多
关键词 metal-matrix composites(MMCs) Pulse plasma sintering(PPS) Ceramic filler Microstructure Properties
下载PDF
STATISTICAL AND COMPOSITE ANALYSIS OF RELATIONSHIP BETWEEN THE NUMBER OF CONVECTIVE CORES AND THE CHARACTERISTICS OF TBB WITHIN THE TROPICAL CYCLONE CIRCULATION AND ITS INTENSITY 被引量:1
6
作者 曹钰 岳彩军 寿绍文 《Journal of Tropical Meteorology》 SCIE 2015年第1期1-13,共13页
Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the... Based on the data(including radius of maximum winds) from the JTWC(Joint Typhoon Warning Center),the tropical cyclones(TCs) radii of the outermost closed isobar, TCs best tracks from Shanghai Typhoon Institute and the Black Body Temperature(TBB) of the Japanese geostationary meteorological satellite M1 TR IR1, and combining13 tropical cyclones which landed in China again after visiting the island of Taiwan during the period from 2001 to2010, we analyzed the relationship between the number of convective cores within TC circulation and the intensity of TC with the method of convective-stratiform technique(CST) and statistical and composite analysis. The results are shown as follows:(1) The number of convective cores in the entire TC circulation is well corresponding with the outer spiral rainbands and the density of convective cores in the inner core area increases(decreases) generally with increasing(decreasing) TC intensity. At the same time, the number of convective cores within the outer spiral rainbands is more than that within the inner core and does not change much with the TC intensity. However, the density of convective cores within the outer spiral rainbands is lower than that within the inner core.(2) The relationship described above is sensitive to landing location to some extent but not sensitive to the structure of TC.(3) The average value of TBB in the inner core area increases(decreases) generally with increasing(decreasing) of TC intensity, which is also sensitive to landing situation to some extent. At the same time, the average value of TBB within the outer spiral rainbands is close to that within the entire TC circulation, and both of them are more than that within the inner core. However, they do not reflect TC intensity change significantly.(4) The results of statistical composite based on convective cores and TBB are complementary with each other, so a combination of both can reflect the relationship between TC rainbands and TC intensity much better. 展开更多
关键词 synoptic meteorology tropical cyclone intensity number of convective cores TBB statistical composite
下载PDF
Development of Composite Cellular Cores for Sandwich Panels Based on Folded Polar Quadra-Structures 被引量:1
7
作者 Valelltin Khaliulin Wang Zhijin Elena Gershtein 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期519-528,共10页
An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented. Polar folded quadra structures are regarded as a geometric basis for these cores whose standard fra... An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented. Polar folded quadra structures are regarded as a geometric basis for these cores whose standard frag ment has lhe fourlh degree of axial symmelry. The classification of the polar strucluresaredeseribedanda method of various quadra slrueture synthesis is developed. A possibilily to provide high strength of lhe structure due m preservation of faces reinforcement pattern is presented. Arrangemen! of the plane core on a bi curvature surface is also introduced. Besides, provision of isotropyof the core in two or three directions are described. Finally, exam ples of cellular folded cores manufaclured from basalt reinforced plaslic are demonslrated. 展开更多
关键词 composite sandwich panel cellular core folded polar quadra-structure synthesis of cellular struclure quadra-struclure classification
下载PDF
Electrolytic Co-Deposition Mechanisms, Texture Layers, and Residual Stresses in Nanocomposite Coatings Processes: A Review
8
作者 Noureddine Elboughdiri 《Advances in Chemical Engineering and Science》 CAS 2023年第2期79-92,共14页
The composite coating has gained wider attention due to its property to protect materials used in energy, bridges, offshore platforms, underground pipelines, and the aviation industry from corrosion and deterioration.... The composite coating has gained wider attention due to its property to protect materials used in energy, bridges, offshore platforms, underground pipelines, and the aviation industry from corrosion and deterioration. In this work, a literature review was conducted about the processes of nanocomposite coating, the mechanisms of electrolytic co-deposition, the texture of layers, and the residual stresses. An important aspect, residual stress, was emphasized, which represents the persistent stress after removing the external force affecting a metal in the plastic region. Because it cannot be measured directly and may be determined by measuring strain and indirect methods, the sources and methods for measuring residual stresses (XRD, SEM, TEM, EDS) were described in the last section to provide a comprehensive overview. Based on the thorough analysis of the published literature, it was concluded that nanoparticles could be electrodeposited with Ni on an Al substrate using a direct current and Ni sulfamate as an electrolytic solution, and Nickel will not reside on the oxide layer covering Al, so chemical changes are needed to prepare the Al surface. In addition, texture changes with the thickness of the coated layer must be investigated. 展开更多
关键词 NANOSTRUCTURE Nanoparticles CO-DEPOSITION TEXTURE metal-matrix composites NICKEL
下载PDF
Spray Atomized and Codeposited Al-Li Based Metal-matrix Composites Processing and Properties 被引量:1
9
作者 E. Raskin S. Nayim M.Polak and J.Baram(Materials Engineering Dept., Ben-Gurion University of the Negev, Beer-Sheva, Israel )A.N.Sembira(Nuclear Research Center, Negev, Beer-Sheva, Israel)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期329-339,共11页
In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate wh... In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions. 展开更多
关键词 LI Al Spray Atomized and Codeposited Al-Li Based metal-matrix composites Processing and Properties
下载PDF
High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures 被引量:1
10
作者 Guo-Wu Wang Chun-Sheng Guo +2 位作者 Liang Qiao Tao Wang Fa-Shen Li 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期508-513,共6页
To fully release the potential of wide bandgap(WBG)semiconductors and achieve high energy density and efficiency,a carbonyl iron soft magnetic composite(SMC)with an easy plane-like structure is prepared.Due to this st... To fully release the potential of wide bandgap(WBG)semiconductors and achieve high energy density and efficiency,a carbonyl iron soft magnetic composite(SMC)with an easy plane-like structure is prepared.Due to this structure,the permeability of the composite increases by 3 times(from 7.5 to 21.5)at 100 MHz compared with to the spherical carbonyl iron SMC,and the permeability changes little at frequencies below 100 MHz.In addition,the natural resonance frequency of the composite shifts to higher frequencies at 1.7 GHz.The total core losses of the composites at 10,20,and 30 m T are80.0,355.3,and 810.7 m W/cm^(3),respectively,at 500 k Hz.Compared with the spherical carbonyl iron SMC,the core loss at500 k Hz is reduced by more than 60%.Therefore,this kind of soft magnetic composite with an easy plane-like structure is a good candidate for unlocking the potential of WBG semiconductors and developing the next-generation power electronics. 展开更多
关键词 soft magnetic composite high frequency magnetic property power electronic core loss
下载PDF
Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix Composites Part Ⅱ:Reinforcement Injection and Deposition 被引量:1
11
作者 V. Erukhimovitch and J.Baram (Materials Engineering Department, Ben-Gurion University of Negev, Beer-Sheva, Israel) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第3期165-170,共6页
The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and c... The influence of the injection of reinforcing particles (for the production of metal matrix composites and of the droplets-to-substrate heat transfer on the resulting microstructural uniformity of spray atomized and codeposited composite material is analyzed. The reinforcement particles injection velocity has to be limited between an upper and a lower critical values. in order to ensure entrapment into the matrix droplets in flight. The thermal history of the injected droplets during the deposition stage is calculated with the assumption that the in-flight solidifying droplets reach the substrate while containing still at least 20% liquid volume fraction, in order to avoid porosity of the deposited material. The substrate to pouring-tube orifice distance where that condition is achieved depends strongly on the atomization pressure and the convective heat transfer coefficient of the substrate. It is demonstrated that 'tailoring' the microstructures and the reinforcement volume percent in the deposited material is feasible. The critical process parameters : the atomization pressure, the melt flow rate. the substrate to pouring-tube orifice distance, the reinforcement particles injection location and rate can all be adequately chosen in order to obtain any desired microstructure, grain size, reinforcement volume percent, with the additional benefit, if wanted, of rapid solidification processing 展开更多
关键词 Analysis of Solidification in Spray Atomized and Codeposited metal-matrix composites Part Reinforcement Injection and Deposition Vc
下载PDF
Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets 被引量:2
12
作者 A.AMIRI M.MOHAMMADIMEHR M.ANVARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第7期1027-1038,共12页
In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order she... In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae. 展开更多
关键词 stress and buckling analysis thick-walled micro cylindrical sandwich panel flexible foam core carbon nanotube reinforced composite(CNTRC)face sheet high-order shear deformation theory(HSDT)
下载PDF
ANALYSIS OF ELASTOPLASTIC DEFORMATION IN METAL-MATRIX COMPOSITES WITH PARTICULATE REINFORCEMENTS
13
作者 方岱宁 周储伟 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第2期153-160,共8页
In this paper, elastoplastic stress-strain behavior during tensile deformation of an aluminum alloy matrix composite containing alumina circular and non-circular particles is analyzed. In terms of cell models in conju... In this paper, elastoplastic stress-strain behavior during tensile deformation of an aluminum alloy matrix composite containing alumina circular and non-circular particles is analyzed. In terms of cell models in conjunction with continuum plasticity theory, various periodic arrays of particles are assumed in a three-dimensional finite element simulation. The geometrical effects of particle volume fraction, shape, aspect ratio, array and distribution, as well as non-circular particle orientation on the overall elastoplastic stress-strain behavior are examined in view to design optimum microstructures of the composites. 展开更多
关键词 elastoplastic deformation metal-matrix composite PARTICLES finite element analysis
下载PDF
Experiments and simulation of low-velocity impact characteristics on carbon fiber composite lattice core sandwich structures
14
作者 李明 吴林志 +2 位作者 关正西 王世勋 马力 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第6期801-805,共5页
Since composite sandwich structures are susceptible to low-velocity impact damage,a thorough characterization of the loading and damage process during impact is important.In the present paper,the low-velocity impact r... Since composite sandwich structures are susceptible to low-velocity impact damage,a thorough characterization of the loading and damage process during impact is important.In the present paper,the low-velocity impact response of carbon fiber composites lattice structures is investigated by experimental and numerical methods.Impact tests on composite plates are performed using an instrumented drop-weight machine(Instron 9250HV)and a new damage mode is observed.A three-dimensional finite element model is built by ABAQUS/Explicit and user subroutine(VUMAT)to predict the peak loading and simulate the complicated damage problem.The numerical predictions are in good agreement with the experimental results. 展开更多
关键词 low-velocity impact composites lattice core damage mode
下载PDF
Facile preparation of core-shell Si@Li4Ti5O12 nanocomposite as large-capacity lithium-ion battery anode 被引量:3
15
作者 Mengjing Liu Hanyang Gao +2 位作者 Guoxin Hu Kunxu Zhu Hao Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期89-98,I0004,共11页
As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limi... As a promising alternative anode material,silicon(Si)presents a larger capacity than the commercial anode to achieve large capacity lithium-ion batteries.However,the application of pure Si as anode is hampered by limitations such as volume expansion,low conductivity and unstable solid electrolyte interphase.To break through these limitations,the core-shell Si@Li4Ti5O12nanocomposite,which was prepared via in-situ self-assembly reaction and decompressive boiling fast concentration method,was proposed in this work.This anode combines the advantages of nano-sized Si particle and pure Li4Ti5O12(LTO)coating layer,improving the performance of the lithium-ion batteries.The Si@Li4Ti5O12 anode displays a high initial discharge/charge specific capacity of 1756/1383 m Ahg^-1 at 500 mAg^-1(representing high initial coulombic efficiency of 78.8%),a large rate capability(specific capacity of 620 mAhg^-1 at4000 mAg^-1),an outstanding cycling stability(reversible specific capacity of 883 mAhg^-1 after 150 cycles)and a low volume expansion rate(only 3.3% after 150 cycles).Moreover,the synthesis process shows the merits of efficiency,simplicity,and economy,providing a reliable method to fabricate large capacity Si@Li4Ti5O12nanocomposite anode materials for practical lithium-ion batteries. 展开更多
关键词 Si@Li4Ti5O12 composites core-shell nanoparticles In-situ self-assembly Decompressive boiling concentration Lithium-ion battery anode
下载PDF
Analysis of Solidification in Spray Atomized and Codeposited Metal-matrix Composites Part Ⅰ: Atomization
16
作者 V.Erukhimovitch and J.Baram(Materials Engineering Department, Ben-Gurion University of Negev, Beer-Sheva, Israel) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第2期79-90,共12页
Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the de... Fluid mechanics, heat transfer and liquid-to-solid phase transformation are assessed in optimizing the spray atomization and codeposition process parameters for size refinement and microstructural uniformity of the deposited material. Atomization gas velocities, atomized droplets velocities, convective heat transfer coefficients, thermal histories of the solidifying droplets, freezing rates, fraction solid evolution and solid-liquid interface propagation velocity are calculated. The influence, on the deposit microstructural features, of process parameters like the atomization gas pressure, the pouring tube orifice diameter, the geometrical features of the atomization device,the potency of , pre-existing or injected as reinforcement, nucleation sites, the wetting angle between the liquid melt bnd impurity particles acting as preferred nucleation sites, the in-flight distance of the solidifying droplets in the atomization chamber, i5 evaluated. As a result of the evaluation, appropriate choice of the adjustable process parameters for the production of powders and/or deposits with desired grain size and microstructure, can be made. 展开更多
关键词 Co FIGURE ATOMIZATION Analysis of Solidification in Spray Atomized and Codeposited metal-matrix composites Part
下载PDF
Vibration Serviceability of Large-Span Steel–Concrete Composite Beam with Precast Hollow Core Slabs Under Walking Impact
17
作者 Jiepeng Liu Shu Huang +1 位作者 Jiang Li Y.Frank Chen 《Engineering》 SCIE EI CAS 2022年第12期93-104,共12页
A large-span steel–concrete composite beam with precast hollow core slabs(CBHCSs)is a relatively new floor structure that can be applied to various long-span structures.However,human-induced vibrations may present se... A large-span steel–concrete composite beam with precast hollow core slabs(CBHCSs)is a relatively new floor structure that can be applied to various long-span structures.However,human-induced vibrations may present serviceability issues in such structures.To alleviate vibrations,both the walking forces excited by humans and the associated floor responses must be elucidated.In this study,150 load–time histories of walking,excited by 25 test participants,are obtained using a force measuring plate.The dynamic loading factors and phase angles in the Fourier series functions for one-step walking are determined.Subsequently,walking tests are performed on seven CBHCS specimens to capture the essential dynamic properties of mode shapes,natural frequencies,damping ratios,and acceleration time histories.The CBHCS floor system generally exhibits a high frequency(>10 Hz)and low damping(damping ratio<2%).Sensitivity studies using the finite element method are conducted to investigate the vibration performance of the CBHCS floor system,where the floor thickness,steel beam type,contact time,and human weight are considered.Finally,analytical expressions derived for the fundamental frequency and peak acceleration agree well with the experimental results and are hence proposed for practical use. 展开更多
关键词 composite beam Hollow core slab Walking force Floor vibration Mode shape
下载PDF
Effective Elastic Properties of Honeycomb Core with Fiber-Reinforced Composite Cells
18
作者 F. Ernesto Penado 《Open Journal of Composite Materials》 2013年第4期89-96,共8页
Sandwich construction incorporating a honeycomb cellular core offers the attainment of structures that are very stiff and strong in bending while the weight is kept at a minimum. Generally, an aluminum or Nomex honeyc... Sandwich construction incorporating a honeycomb cellular core offers the attainment of structures that are very stiff and strong in bending while the weight is kept at a minimum. Generally, an aluminum or Nomex honeycomb core is used in applications requiring sandwich construction with fiber-reinforced composite facesheets. However, the use of a fiber-reinforced composite core offers the potential for even lower weight, increased stiffness and strength, low thermal distortion compatible with that of the facesheets, the absence of galvanic corrosion and the ability to readily modify the core properties to suit specialized needs. Furthermore, the material of the core itself will exhibit anisotropic material properties in this case. In order to design, analyze and optimize these structures, knowledge of the effective mechanical properties of the core is essential. In this paper, the effective three-dimensional mechanical properties of a composite hexagonal cell core are determined using a numerical method based on a finite element analysis of a representative unit cell. In particular, the geometry of the simplest repeating unit of the core as well as the appropriate loading and boundary conditions that must be applied is presented. 展开更多
关键词 LIGHTWEIGHT Structures composite Mirrors SANDWICH Construction HEXAGONAL Cell core EFFECTIVE core Properties
下载PDF
Development of Composites Sandwich Structures Using a Core Cork
19
作者 D.Regacon A.Garay 《材料科学与工程(中英文A版)》 2018年第3期100-107,共8页
Sandwich structures are comprised of two external faces/skins(usually made of synthetic fiber/resin)and a core between them,being lightweight and with high stiffness.The employment of composite materials such as engin... Sandwich structures are comprised of two external faces/skins(usually made of synthetic fiber/resin)and a core between them,being lightweight and with high stiffness.The employment of composite materials such as engineering materials has achieved more space in various segments of the industry,due to the following properties found:low density,stiffness,resistance to abrasion,impact and corrosion developed along the technological advancement of materials.This study aimed to develop a composite structure sandwich with cork core using in the face resin unsaturated polyester and glass fiber material,in order to obtain a final material with improved mechanical and physical properties compared to a conventional composite,without core.The samples were obtained by pressing process for different volume percentage of glass fiber in order to evaluate the influence of this parameter on the behavior of the material.The different samples were mechanically analyzed using the tests by tensile,bending and hardness,revealing high efficiency,except for the bending test in which the sandwich composite showed lower values compared to the composite standard.It was also performed to test water absorption,thermal and acoustic insulation test achieving satisfactory results and proving the effectiveness of cork in the search for materials with insulating characteristics,thus enabling the use of cork as a raw material for this class of materials contributing to sustainability and helping to generate values and innovation.In addition,it functions as a great thermal and acoustic insulation. 展开更多
关键词 composite SANDWICH CORK core mechanical and PHYSICAL PROPERTIES thermal and ACOUSTIC PROPERTIES
下载PDF
Application of Monodisperse Thermo-Responsive Composite Microgels with Core-Shell Structure Based on Au@Ag Bimetallic Nanorod as Core in Surface Enhanced Raman Spectroscopy Substrate 被引量:1
20
作者 董旭 陈思远 査刘生 《Journal of Donghua University(English Edition)》 EI CAS 2016年第1期112-116,共5页
The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM ... The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells. 展开更多
关键词 smart composite microgels core-shell structure Au@Ag bimetallic nanorods thermo-responsiveness surface enhanced Raman spectroscopy(SERS)
下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部