In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT)...In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.展开更多
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low grow...Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.展开更多
The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported....The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω- ram. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6, Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.展开更多
Low pressure metalorganic chemical vapour deposition (LP-MOCVD) growth and characteristics of InAsSb on (100) GaSb substrates are investigated. Mirror-like surfaces with a minimum lattice mismatch are obtained. Th...Low pressure metalorganic chemical vapour deposition (LP-MOCVD) growth and characteristics of InAsSb on (100) GaSb substrates are investigated. Mirror-like surfaces with a minimum lattice mismatch are obtained. The samples are studied by photoluminescence spectra, and the output is 3.17μm in wavelength. The surface of InAsSb epilayer shows that its morphological feature is dependent on buffer layer. With an InAs buffer layer used, the best surface is obtained. The InAsSb film shows to be of n-type conduction with an electron concentration of 8.52 × 10^16 cm^-3.展开更多
The single solid source precursor, cobalt (Ⅱ) acetylacetonate was prepared and characterized by infrared spectroscopy. Thin films of cobalt oxide were deposited on soda lime glass substrates through the pyrolysis ...The single solid source precursor, cobalt (Ⅱ) acetylacetonate was prepared and characterized by infrared spectroscopy. Thin films of cobalt oxide were deposited on soda lime glass substrates through the pyrolysis (metal organic chemical vapour deposition (MOCVD)) of single solid source precursor, cobalt acetylacetonate, Co[C5H7O2]2 at a temperature of 420℃. The compositional characterization carried out by rutherford backscattering spectroscopy and X-ray diffraction (XRD), showed that the films have a stoichiometry of Co2O3 and an average thickness of 227±0.2 nm. A direct energy gap of 2,15±0.01 eV was calculated by the data obtained by optical absorption spectroscopy. The morphology of the films obtained by scanning electron microscopy, showed that the grains were continuous and uniformly distributed at various magnifications, while the average grain size was less than i micron for the deposited thin films of cobalt oxide.展开更多
Thin films of copper titanium oxide were deposited by metal organic chemical vapour deposition technique from the synthesized single solid source precursor, copper titanium acetylacatonate Cu [Ti(C5H7O2)3] at the depo...Thin films of copper titanium oxide were deposited by metal organic chemical vapour deposition technique from the synthesized single solid source precursor, copper titanium acetylacatonate Cu [Ti(C5H7O2)3] at the deposition temperature of 420°C. The deposited films were characterized using Rutherford Backscattering Spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-Ray facility attached to it, X-Ray Diffractometry, UV-Visible Spectrometry and van-der Pauw Conductivity measurement. Results show that the thickness of the prepared film is determined as 101.236 nm and the film is amorphous in structure, having average grain size of approximately 1 μm. The optical behaviour showed that the absorption edge of the film was at 918 nm near infrared with corresponding direct energy band gap of 1.35 eV. The electrical characterization of the film gave the values of resistivity, sheet resistance and conductivity of the film as 3.43 × 10-1 Ω-cm, 3.39 × 106 Ω/square and 2.91 (Ω-cm)-1 respectively.展开更多
ZnO nanocrystalline films are prepared on Si substrates at different temperatures by using metal-organic chemical vapour deposition (MOCVD). It is observed that when the growth temperature is low, the stoichiometric...ZnO nanocrystalline films are prepared on Si substrates at different temperatures by using metal-organic chemical vapour deposition (MOCVD). It is observed that when the growth temperature is low, the stoichiometric ratio between Zn and 0 atoms has a large deviation from the ideal ratio of 1:1. The ZnO grains in the film have small sizes and are not well crystallized, resulting in a poor photoluminescence (PL) property. When the temperature is increased to an appropriate value, the Zn/O ratio becomes optimized, and most of Zn and 0 atoms are combined into Zn-O bonds. Then the film has good crystal quality and good PL property. If the temperature is fairly high, the interracial mutual diffusion of atoms between the substrate and the epitaxial film appears, and the desorption process of the oxygen atoms is enhanced. However, it has no effect on the film property. The film still has the best crystal quality and PL property.展开更多
Si-dopedβ-Ga_(2)O_(3)films are fabricated through metal-organic chemical vapor deposition(MOCVD).Solar-blind ultraviolet(UV)photodetector(PD)based on the films is fabricated by standard photolithography,and the photo...Si-dopedβ-Ga_(2)O_(3)films are fabricated through metal-organic chemical vapor deposition(MOCVD).Solar-blind ultraviolet(UV)photodetector(PD)based on the films is fabricated by standard photolithography,and the photodetection properties are investigated.The results show that the photocurrent increases to 11.2 mA under 200μW·cm^(-2)254 nm illumination and±20 V bias,leading to photo-responsivity as high as 788 A·W^(-1).The Si-dopedβ-Ga2O3-based PD is promised to perform solar-blind photodetection with high performance.展开更多
Molybdenum oxodithiocarbamate was prepared as thin films which were deposited on sodalime glass a single solid source precursor for molybdenum oxysulphide substrates using metal organic chemical vapour deposition (MO...Molybdenum oxodithiocarbamate was prepared as thin films which were deposited on sodalime glass a single solid source precursor for molybdenum oxysulphide substrates using metal organic chemical vapour deposition (MOCVD) technique at a temperature of 420~C. Rutherford backscattering spectroscopy (RBS) was used to determine the elemental composition of the film which showed that the films contained large amounts of oxygen. The large amount of oxygen was attributed to the large abundance of oxygen in the starting material. A direct optical energy gap of 3.31 eV was obtained from the analysis of the absorption spectrum. The scanning electron microscopy (SEM) micrographs of the films showed that the films were continuous and porous. An estimated average size of the grains was below 5 #m. X-ray diffraction (XRD) showed that the deposited films were crystalline in nature.展开更多
In this work, a hetero-epitaxial Al0.49In0.51As/Ga0.47In0.53 As metamorphic high electron mobility transistor(mHEMT) grown by metal–organic chemical vapor deposition(MOCVD) on p-type silicon substrate has been succes...In this work, a hetero-epitaxial Al0.49In0.51As/Ga0.47In0.53 As metamorphic high electron mobility transistor(mHEMT) grown by metal–organic chemical vapor deposition(MOCVD) on p-type silicon substrate has been successfully demonstrated. A novel AlGaAs/Al As period multiple quantum well(MQW) composite buffer scheme is developed to effectively tune the leakage current from the buffer layer. The quantized room-temperature Hall mobility of the twodimensional electron gas(2DEG) is larger than 7800 cm2/V·s, with an average sheet carrier density of 4.6×1012cm-2.Two-stage electron beam(EB) lithography technology by a JBX-6300 e-beam lithography system is developed to realize a 0.13-μm m HEMT device on Si substrate. A maximum transconductance Gm of up to 854 mS/mm is achieved, and is comparable to that of m HEMT technology on Ga As substrate with the same dimension. The fTand fmax are 135 GHz and120 GHz, respectively.展开更多
A single solid source precursor bis-(morpholinodithioato-s,s’)-Mo was prepared and molybdenum sulphide thin film was deposited on sodalime glass using Metal Organic Chemical Vapour Deposition (MOCVD) technique at dep...A single solid source precursor bis-(morpholinodithioato-s,s’)-Mo was prepared and molybdenum sulphide thin film was deposited on sodalime glass using Metal Organic Chemical Vapour Deposition (MOCVD) technique at deposition temperature of 420?C. The film was characterized using Rutherford Backscattering Spectroscopy (RBS), Ultraviolet-Visible Spectroscopy, Four point probe technique, Scanning Electron Mi-croscopy (SEM), X-ray Diffractometry (XRD) and Atomic Force Microscopy (AFM). A direct optical band gap of 1.77 eV was obtained from the analysis of the absorption spectrum. The sheet resistance was found to be of the order of 10P–5P ΩP–1P?cmP–1P. SEM micrographs of the films showed the layered structure of the film with an estimated grain size that is less than 2 μm while XRD indicates parallel orientation of the basal plane to the substrate surface.展开更多
ZnO(002) films with different thicknesses ranging from 7 to 300 nm were grown on sapphire(006) substrates via metal-organic chemical vapor deposition (MOCVD). The two-dimensional(2D) planar layer and the three...ZnO(002) films with different thicknesses ranging from 7 to 300 nm were grown on sapphire(006) substrates via metal-organic chemical vapor deposition (MOCVD). The two-dimensional(2D) planar layer and the three-dimensional(3D) island layer were studied by using of X-ray diffraction(XRD) rocking curves and atomic force microscopy (AFM). The room temperature photoluminescence (PL) spectra show a blue shift of the peak positions of the uhraviolet(UV) emission with increasing film thickness. The blue shift is remarkably high(393-380 nm) when an increase in film thickness(7-15 nm) is accompanied by the change of structure from a 2D planar layer to a 3D island layer. The PL spectra at 77 K also indicate that there are different transition mechanisms in the film thickness from a 2D planar layer to a 3D island layer near the 2D layer region.展开更多
Gallium nitride(GaN) thin film of the nitrogen polarity(N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition(MOCVD). The misorienta...Gallium nitride(GaN) thin film of the nitrogen polarity(N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition(MOCVD). The misorientation angle is off-axis from C-plane toward M-plane of the substrates, and the angle is 2°and 4°respectively. The nitrogen polarity was confirmed by examining the images of the scanning electron microscope before and after the wet etching in potassium hydroxide(KOH) solution. The morphology was studied by the optical microscope and atomic force microscope. The crystalline quality was characterized by the x-ray diffraction. The lateral coherence length, the tilt angle, the vertical coherence length, and the vertical lattice-strain were acquired using the pseudo-Voigt function to fit the x-ray diffraction curves and then calculating with four empirical formulae. The lateral coherence length increases with the misorientation angle, because higher step density and shorter distance between adjacent steps can lead to larger lateral coherence length.The tilt angle increases with the misorientation angle, which means that the misoriented substrate can degrade the identity of crystal orientation of the N-polar GaN film. The vertical lattice-strain decreases with the misorientation angle. The vertical coherence length does not change a lot as the misorientation angle increases and this value of all samples is close to the nominal thickness of the N-polar GaN layer. This study helps to understand the influence of the misorientation angle of misoriented C-plane sapphire on the morphology, the crystalline quality, and the microstructure of N-polar GaN films.展开更多
Growth of cadmium sulfide (CdS) thin films on glass substrates was carried out by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) using Cd(S2CNEt2)2 as the single precursor. Changes in th...Growth of cadmium sulfide (CdS) thin films on glass substrates was carried out by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) using Cd(S2CNEt2)2 as the single precursor. Changes in the surface morphology of the deposited CdS thin films were investigated by atomic force microscope (AFM) as the function of substrate temperature (Ts), vaporizing temperature (Tv), and Ar flow rate. With the increase of Tv, CdS thin films evolved from pyramidal structure with fine grains to columnar structure with large grains. X-ray diffraction (XRD) patterns indicated that the CdS films had random orientation at the lower Tv and preferred orientation at the higher Tv. In addition, Ts had a great effect on the surface roughness of the CdS films, and a quantum dot-like structural CdS films were obtained in a narrow range of Ts with high Ar flow rate. Furthermore, the optical properties of the CdS films were measured using ultraviolet-visible (UV/VIS) spectrometer.展开更多
基金Project supported by the National Key Science & Technology Special Project,China(Grant No.2008ZX01002-002)the Fundamental Research Funds for the Central Universities,China(Grant No.JY10000904009)the Major Program and State Key Program of the National Natural Science Foundation of China(Grant Nos.60890191 and 60736033)
文摘In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60706009, 90401025, 60736036, 60777021 and60476009)the National Key Basic Research Program of China (Grant Nos 2006CB604901 and 2006CB604902)the National High Technology Research and Development Program of China (Grant Nos 2006AA01Z256, 2007AA03Z419 and 2007AA03Z417)
文摘Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with different growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the low growth rate sample shows a greater blueshift of PL peak wavelength. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blueshift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
基金Project supported by CERG Grant (615506) from the Research Grants Council of Hong Kong Special Administrative Region of China and Intel CorporationScience and Technology Plan of the Education Bureau of Guangxi Zhuang Autonomous Region of China (Grant No. 200911MS93)
文摘The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω- ram. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6, Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2005A000200)the West Light Plan of China (Grant No 2005ZD01)the Xi’an Applied Materials Innovation Fund of China (Grant No XA-AM-200613)
文摘Low pressure metalorganic chemical vapour deposition (LP-MOCVD) growth and characteristics of InAsSb on (100) GaSb substrates are investigated. Mirror-like surfaces with a minimum lattice mismatch are obtained. The samples are studied by photoluminescence spectra, and the output is 3.17μm in wavelength. The surface of InAsSb epilayer shows that its morphological feature is dependent on buffer layer. With an InAs buffer layer used, the best surface is obtained. The InAsSb film shows to be of n-type conduction with an electron concentration of 8.52 × 10^16 cm^-3.
基金the Third World Academy of Science (TWAS, Grant #93-058 R6/PHYS/AF/AC)Obafemi Awolowo University(University Research Committee URC) for supporting this project
文摘The single solid source precursor, cobalt (Ⅱ) acetylacetonate was prepared and characterized by infrared spectroscopy. Thin films of cobalt oxide were deposited on soda lime glass substrates through the pyrolysis (metal organic chemical vapour deposition (MOCVD)) of single solid source precursor, cobalt acetylacetonate, Co[C5H7O2]2 at a temperature of 420℃. The compositional characterization carried out by rutherford backscattering spectroscopy and X-ray diffraction (XRD), showed that the films have a stoichiometry of Co2O3 and an average thickness of 227±0.2 nm. A direct energy gap of 2,15±0.01 eV was calculated by the data obtained by optical absorption spectroscopy. The morphology of the films obtained by scanning electron microscopy, showed that the grains were continuous and uniformly distributed at various magnifications, while the average grain size was less than i micron for the deposited thin films of cobalt oxide.
文摘Thin films of copper titanium oxide were deposited by metal organic chemical vapour deposition technique from the synthesized single solid source precursor, copper titanium acetylacatonate Cu [Ti(C5H7O2)3] at the deposition temperature of 420°C. The deposited films were characterized using Rutherford Backscattering Spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-Ray facility attached to it, X-Ray Diffractometry, UV-Visible Spectrometry and van-der Pauw Conductivity measurement. Results show that the thickness of the prepared film is determined as 101.236 nm and the film is amorphous in structure, having average grain size of approximately 1 μm. The optical behaviour showed that the absorption edge of the film was at 918 nm near infrared with corresponding direct energy band gap of 1.35 eV. The electrical characterization of the film gave the values of resistivity, sheet resistance and conductivity of the film as 3.43 × 10-1 Ω-cm, 3.39 × 106 Ω/square and 2.91 (Ω-cm)-1 respectively.
基金Project supported by the Natural Science Foundation of Shaanxi Province,China (Grant No. 2011JQ6015)the Natural Science Foundation of Shaanxi Provincial Educational Committee,China (Grant No. 09JK740)
文摘ZnO nanocrystalline films are prepared on Si substrates at different temperatures by using metal-organic chemical vapour deposition (MOCVD). It is observed that when the growth temperature is low, the stoichiometric ratio between Zn and 0 atoms has a large deviation from the ideal ratio of 1:1. The ZnO grains in the film have small sizes and are not well crystallized, resulting in a poor photoluminescence (PL) property. When the temperature is increased to an appropriate value, the Zn/O ratio becomes optimized, and most of Zn and 0 atoms are combined into Zn-O bonds. Then the film has good crystal quality and good PL property. If the temperature is fairly high, the interracial mutual diffusion of atoms between the substrate and the epitaxial film appears, and the desorption process of the oxygen atoms is enhanced. However, it has no effect on the film property. The film still has the best crystal quality and PL property.
基金the National Natural Science Foundation of China(Grant Nos.61774019 and 51572033)the Fund of State Key Laboratory of Information Photonics and Optical Communications(BUPT)the Fundamental Research Funds for the Central Universities,China.
文摘Si-dopedβ-Ga_(2)O_(3)films are fabricated through metal-organic chemical vapor deposition(MOCVD).Solar-blind ultraviolet(UV)photodetector(PD)based on the films is fabricated by standard photolithography,and the photodetection properties are investigated.The results show that the photocurrent increases to 11.2 mA under 200μW·cm^(-2)254 nm illumination and±20 V bias,leading to photo-responsivity as high as 788 A·W^(-1).The Si-dopedβ-Ga2O3-based PD is promised to perform solar-blind photodetection with high performance.
基金the Third World Academy of Science (TWAS,No.93-058R6/PHYS/AF/AC) Italy and Obafemi Awolowo University (University Research Committee (URC)) for support-ing this project
文摘Molybdenum oxodithiocarbamate was prepared as thin films which were deposited on sodalime glass a single solid source precursor for molybdenum oxysulphide substrates using metal organic chemical vapour deposition (MOCVD) technique at a temperature of 420~C. Rutherford backscattering spectroscopy (RBS) was used to determine the elemental composition of the film which showed that the films contained large amounts of oxygen. The large amount of oxygen was attributed to the large abundance of oxygen in the starting material. A direct optical energy gap of 3.31 eV was obtained from the analysis of the absorption spectrum. The scanning electron microscopy (SEM) micrographs of the films showed that the films were continuous and porous. An estimated average size of the grains was below 5 #m. X-ray diffraction (XRD) showed that the deposited films were crystalline in nature.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61401373)the Fundamental Research Funds for Central University,China(Grant Nos.XDJK2013B004 and 2362014XK13)the Chongqing Natural Science Foundation,China(Grant No.cstc2014jcyj A40038)
文摘In this work, a hetero-epitaxial Al0.49In0.51As/Ga0.47In0.53 As metamorphic high electron mobility transistor(mHEMT) grown by metal–organic chemical vapor deposition(MOCVD) on p-type silicon substrate has been successfully demonstrated. A novel AlGaAs/Al As period multiple quantum well(MQW) composite buffer scheme is developed to effectively tune the leakage current from the buffer layer. The quantized room-temperature Hall mobility of the twodimensional electron gas(2DEG) is larger than 7800 cm2/V·s, with an average sheet carrier density of 4.6×1012cm-2.Two-stage electron beam(EB) lithography technology by a JBX-6300 e-beam lithography system is developed to realize a 0.13-μm m HEMT device on Si substrate. A maximum transconductance Gm of up to 854 mS/mm is achieved, and is comparable to that of m HEMT technology on Ga As substrate with the same dimension. The fTand fmax are 135 GHz and120 GHz, respectively.
文摘A single solid source precursor bis-(morpholinodithioato-s,s’)-Mo was prepared and molybdenum sulphide thin film was deposited on sodalime glass using Metal Organic Chemical Vapour Deposition (MOCVD) technique at deposition temperature of 420?C. The film was characterized using Rutherford Backscattering Spectroscopy (RBS), Ultraviolet-Visible Spectroscopy, Four point probe technique, Scanning Electron Mi-croscopy (SEM), X-ray Diffractometry (XRD) and Atomic Force Microscopy (AFM). A direct optical band gap of 1.77 eV was obtained from the analysis of the absorption spectrum. The sheet resistance was found to be of the order of 10P–5P ΩP–1P?cmP–1P. SEM micrographs of the films showed the layered structure of the film with an estimated grain size that is less than 2 μm while XRD indicates parallel orientation of the basal plane to the substrate surface.
基金Supported by the National Natural Science Foundation of China(Nos. 20071013 and 20301007).
文摘ZnO(002) films with different thicknesses ranging from 7 to 300 nm were grown on sapphire(006) substrates via metal-organic chemical vapor deposition (MOCVD). The two-dimensional(2D) planar layer and the three-dimensional(3D) island layer were studied by using of X-ray diffraction(XRD) rocking curves and atomic force microscopy (AFM). The room temperature photoluminescence (PL) spectra show a blue shift of the peak positions of the uhraviolet(UV) emission with increasing film thickness. The blue shift is remarkably high(393-380 nm) when an increase in film thickness(7-15 nm) is accompanied by the change of structure from a 2D planar layer to a 3D island layer. The PL spectra at 77 K also indicate that there are different transition mechanisms in the film thickness from a 2D planar layer to a 3D island layer near the 2D layer region.
基金supported by the National Natural Science Foundation of China (Grant No. 61991441)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000)Youth Innovation Promotion Association of Chinese Academy of Sciences。
文摘Gallium nitride(GaN) thin film of the nitrogen polarity(N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition(MOCVD). The misorientation angle is off-axis from C-plane toward M-plane of the substrates, and the angle is 2°and 4°respectively. The nitrogen polarity was confirmed by examining the images of the scanning electron microscope before and after the wet etching in potassium hydroxide(KOH) solution. The morphology was studied by the optical microscope and atomic force microscope. The crystalline quality was characterized by the x-ray diffraction. The lateral coherence length, the tilt angle, the vertical coherence length, and the vertical lattice-strain were acquired using the pseudo-Voigt function to fit the x-ray diffraction curves and then calculating with four empirical formulae. The lateral coherence length increases with the misorientation angle, because higher step density and shorter distance between adjacent steps can lead to larger lateral coherence length.The tilt angle increases with the misorientation angle, which means that the misoriented substrate can degrade the identity of crystal orientation of the N-polar GaN film. The vertical lattice-strain decreases with the misorientation angle. The vertical coherence length does not change a lot as the misorientation angle increases and this value of all samples is close to the nominal thickness of the N-polar GaN layer. This study helps to understand the influence of the misorientation angle of misoriented C-plane sapphire on the morphology, the crystalline quality, and the microstructure of N-polar GaN films.
基金supported by the Project of Key Technologies Research & Development Programme of Chengdu under Grant No.06GGYB512GX-030
文摘Growth of cadmium sulfide (CdS) thin films on glass substrates was carried out by atmospheric pressure metal-organic chemical vapor deposition (AP-MOCVD) using Cd(S2CNEt2)2 as the single precursor. Changes in the surface morphology of the deposited CdS thin films were investigated by atomic force microscope (AFM) as the function of substrate temperature (Ts), vaporizing temperature (Tv), and Ar flow rate. With the increase of Tv, CdS thin films evolved from pyramidal structure with fine grains to columnar structure with large grains. X-ray diffraction (XRD) patterns indicated that the CdS films had random orientation at the lower Tv and preferred orientation at the higher Tv. In addition, Ts had a great effect on the surface roughness of the CdS films, and a quantum dot-like structural CdS films were obtained in a narrow range of Ts with high Ar flow rate. Furthermore, the optical properties of the CdS films were measured using ultraviolet-visible (UV/VIS) spectrometer.