Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/...Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.展开更多
An innovative metallic buffer consisting of series-connected hat-shaped entangled wire mesh damper(EWMD)and parallel springs are proposed in this work to enhance the reliability of engineering equipment.The impact res...An innovative metallic buffer consisting of series-connected hat-shaped entangled wire mesh damper(EWMD)and parallel springs are proposed in this work to enhance the reliability of engineering equipment.The impact response and the energy dissipation mechanism of hat-shaped EWMD under different quasi-static compression deformations(2-7 mm)and impact heights(100-200 mm)are investigated using experimental and numerical methods.The results demonstrate distinct stages in the quasi-static mechanical characteristics of hat-shaped EWMD,including stiffness softening,negative stiffness,and stiffness hardening.The loss factor gradually increases with increasing compression deformation before entering the stiffness hardening stage.Under impact loads,the hat-shaped EWMD exhibits optimal impact energy absorption when it enters the negative stiffness stage(150 mm),resulting in the best impact isolation effect of metallic buffer.However,the impact energy absorption significantly decreases when hat-shaped EWMD enters the stiffness hardening stage.Interestingly,quasi-static compression analysis after experiencing different impact loads reveals the disappearance of the negative stiffness phenomenon.Moreover,with increasing impact loads,the stiffness hardening point progressively shifts to an earlier stage.展开更多
Two methods of irrigation,drip,and sprinkler were studied to determine the response of the Javits green roof to irrigation.The control study was dry unirrigated plots.Drip irrigation consisted of irrigation tubes runn...Two methods of irrigation,drip,and sprinkler were studied to determine the response of the Javits green roof to irrigation.The control study was dry unirrigated plots.Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout and sprinkler irrigation used a sprinkler system to irrigate the green roof from above.In all cases,the irrigated roofs had increased the soil moisture,reduced temperatures of both the upper and lower surfaces,reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof.The buffered temperature fluctuations were also studied via air conditioner energy consumption.There was a 28%reduction in air conditioner energy consumption and a 33%reduction in overall energy consumption between dry and irrigated plots.Values of thermal resistance or S were determined for accuracy and for this study,there was little change which is ideal.A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum.It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof.A Mann-Whitney U test was performed to verify the variation in moisture temperatures buffering energy consumption.By getting a p-value<0.05,it indicates that the model is accurate for prediction and medium temperatures were statistically different.展开更多
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co...Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.展开更多
This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentr...This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously.展开更多
Recent advances in the application of the nonlinear energy sink under a sinusoidal excitation make it possible to investigate metal-rubber vibration absorber. To provide such a vibration absorber for the integrated sp...Recent advances in the application of the nonlinear energy sink under a sinusoidal excitation make it possible to investigate metal-rubber vibration absorber. To provide such a vibration absorber for the integrated spacecraft platform,we analyze the targeted energy transfer of the simplified model with nonlinear energy sink using the complex-variables averaging method. Theoretical study shows two quasi-periodic responses that are essentially different in this nonlinear system. The steady-state response which is one of two quasi-periodic responses is caused by the linear instability of system,and another one appears as a result of the nonlinear normal modes between the linear and nonlinear oscillators,resulting from the energy transfer of different oscillators,and it can be used to vibration absorber. Secondly,this paper also discusses the performance of the proposed nonlinear absorber by using the phase portraits. All conclusion derived by the analytic model is verified numerically and the results are consistent with numerical simulations.展开更多
Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly...Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly,a buffer structure was designed to attenuate the pyroshock generated by the pyrotechnic device.Secondly,the mechanical properties of aluminum honeycomb at different temperatures were obtained through quasi-static compression experiments.Then,the internal ballistic responses of the launcher were gained by the closed bomb tests and the equivalent classical interior ballistic model.Finally,the recoil performance of the launcher with aluminum honeycomb buffer at different temperatures was studied.It is revealed that the aluminum honeycomb crushing force gradually decreases with the temperature increases.The peak pressure,burning rate coefficient and velocity increase while the peak time decreases with the temperature increase for the interior ballistics.For the launcher recoil responses,the average launch recoil decreases if the aluminum honeycomb doesn't enter the dense stage.The impact acceleration,projectile velocity and displacement increase as the temperature increase.The paper spotlights the temperature's influence on the recoil characteristics of the aluminum honeycomb buffer,which provides a new idea for buffering technology of pyrotechnic devices in a complex space environment.展开更多
To detect the genome of viruses (in environmental and clinical samples), we use electrophoresis running buffer after PCR reaction. Also, electrophoresis buffers were used widely to separate any DNA molecule. In this p...To detect the genome of viruses (in environmental and clinical samples), we use electrophoresis running buffer after PCR reaction. Also, electrophoresis buffers were used widely to separate any DNA molecule. In this paper, we used four types of previously known electrophoresis buffers to compare which is easy for preparation, simple in structure, low cost and good performance in agarose gel electrophoresis. For this, we used two agarose concentration (1%, 2%) and two types of DNA ladder (100 bp, 1 kb) represent both smaller and larger sizes of molecule for each type of buffers, from the result we found in first level both supper buffer and TAE buffer with good performance and in second level we found bicarbonate buffer also with good performance also. Finally, we found the tang buffer cannot pose any electrophoretic activity on DNA agarose gel electrophoresis.展开更多
Essential oils of pure lavender and lavender blends have been employed as potential anxiolytic aromas in aromatherapy, but a direct comparison of their effectiveness is lacking. The current study investigated the effe...Essential oils of pure lavender and lavender blends have been employed as potential anxiolytic aromas in aromatherapy, but a direct comparison of their effectiveness is lacking. The current study investigated the effects of aroma on induced anxiety in non-clinical adults, comparing pure lavender, a commercially available blend and a no aroma control. An experimental, quantitative, mixed factorial design with an opportunity sample of 60 participants was employed. Participants were randomly allocated to three equal groups, one tested in a room infused with lavender aroma, the second with the doTerra Peace<sup>®</sup> blend, and the third free from any aroma. Participants’ state anxiety scores were measured before and after a novel video-based anxiety induction procedure. Data analysis revealed that the anxiety induction was successful and that both aromas delivered small to medium-sized buffering effects compared to no aroma. The findings add to a small body of research in an area where the practice is global yet has limited scientific evaluation. Future studies utilising brain imaging and blood serum analysis to investigate the anxiolytic mechanism of aromas would be beneficial to further our understanding.展开更多
In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In<sub>2</sub>S<sub>3</sub>, WS<sub>2</sub> and IGZO have been investigated by solar cell capacitance sim...In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In<sub>2</sub>S<sub>3</sub>, WS<sub>2</sub> and IGZO have been investigated by solar cell capacitance simulator (SCAPS) in this work. By varying absorber and buffer layer thickness, photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) are determined. The highest efficiency achieved is 19.6% with WS<sub>2</sub> buffer layer. The impact of temperature on all CuO-based solar cells is also investigated.展开更多
GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared a...GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth.A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film.The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer.This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.展开更多
The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization...The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization of environmentally friendly and efficient CZTSSe solar cells. The Zn1-xMgxO(ZnMgO) and Zn1-xSnxO(ZnSnO) alternate buffer layers are studied in this study using the simulation package solar cell capacitance simulator(SCAPS-1D) numerical simulation model, and the theoretical analysis is further verified by the results of the experiments. We simulate the performance of CZTSSe/ZnXO(X = Mg/Sn) heterojunction devices with different Mg/(Zn+Mg) and Sn/(Zn+Sn) ratios and analyze the intrinsic mechanism of the effect of conduction band offsets(CBO) on the device performance. The simulation results show that the CZTSSe/ZnXO(X = Mg/Sn) devices achieve optimal performance with a small “spike” band or “flat” band at Mg and Sn doping concentrations of 0.1 and 0.2, respectively. To investigate the potential of Zn_(0.9)Mg_(0.1O) and Zn_(0.8)Sn_(0.2)O as alternative buffer layers, carrier concentrations and thicknesses are analyzed. The simulation demonstrates that the Zn0.9Mg0.1O device with low carrier concentration has a high resistivity, serious carrier recombination, and a greater impact on performance from thickness variation. Numerical simulations and experimental results show the potential of the ZnSnO buffer layer as an alternative to toxic CdS, and the ZnMgO layer has the limitation as a substitute buffer layer. This paper provides the theoretical basis and experimental proof for further searching for a suitable flexible CZTSSe Cd-free buffer layer.展开更多
Natural forest ecosystems play an essential role in the conservation of biodiversity of many plants and animals by providing them with habitat and suitable environments. Studies have shown that biodiversity-protected ...Natural forest ecosystems play an essential role in the conservation of biodiversity of many plants and animals by providing them with habitat and suitable environments. Studies have shown that biodiversity-protected areas reduce the loss and degradation of natural habitats to various wild species of plants. This study examined the forest resources in five subzones by conducting tree/shrub species inventory to be able to develop an effective forest management plan for the Buffer Zone Forest Reserve for the sustainable conservation of flora and fauna of Nimule National Park. This is with the view to identify the main tree and shrub species;assess the composition, distribution, and abundance of various tree/shrub species;to determine the species diversity as well as the richness of these areas in terms of growth and performance where DBH and heights of trees/shrubs in the circular sample plots were measured. The results revealed the overall mean DBH and H of 13.83 cm and 6.61 m respectively. The highest number of trees was obtained in subzone B followed by D, while the least were found in subzone A. The overall mean tree/shrub density was 0.83 tons/ha. The mean total basal area and volume per hectare were 3252.74 m<sup>2</sup>/ha and 46,540.82 m<sup>3</sup>/ha respectively. The overall species abundance and distribution indicate Combretum spp, Cedrella spp., Grewia mollis, Acacia Sieberiana, Ziziphus abysinica, and Acacia seyal were the most dominant species, with over 12 species richness at the deposition side of the River Nile, 13 species at the western side of the Nile, the Administration site shows only 7 species, the lowland of Mt. Gordon show over 14 different species, whereas over 10 species were found on the top of Mt. Gordon. The overall mean diversity indices and evenness of H’, D, and E depicted 2.507, 0.871, and 0.840 respectively. These results yielded are relatively moderate. Therefore, conservation efforts are very necessary to improve and maintain the quality of vegetation cover.展开更多
Delay Tolerant Networks(DTNs)have the major problem of message delay in the network due to a lack of endto-end connectivity between the nodes,especially when the nodes are mobile.The nodes in DTNs have limited buffer ...Delay Tolerant Networks(DTNs)have the major problem of message delay in the network due to a lack of endto-end connectivity between the nodes,especially when the nodes are mobile.The nodes in DTNs have limited buffer storage for storing delayed messages.This instantaneous sharing of data creates a low buffer/shortage problem.Consequently,buffer congestion would occur and there would be no more space available in the buffer for the upcoming messages.To address this problem a buffer management policy is proposed named“A Novel and Proficient Buffer Management Technique(NPBMT)for the Internet of Vehicle-Based DTNs”.NPBMT combines appropriate-size messages with the lowest Time-to-Live(TTL)and then drops a combination of the appropriate messages to accommodate the newly arrived messages.To evaluate the performance of the proposed technique comparison is done with Drop Oldest(DOL),Size Aware Drop(SAD),and Drop Larges(DLA).The proposed technique is implemented in the Opportunistic Network Environment(ONE)simulator.The shortest path mapbased movement model has been used as the movement path model for the nodes with the epidemic routing protocol.From the simulation results,a significant change has been observed in the delivery probability as the proposed policy delivered 380 messages,DOL delivered 186 messages,SAD delivered 190 messages,and DLA delivered only 95 messages.A significant decrease has been observed in the overhead ratio,as the SAD overhead ratio is 324.37,DLA overhead ratio is 266.74,and DOL and NPBMT overhead ratios are 141.89 and 52.85,respectively,which reveals a significant reduction of overhead ratio in NPBMT as compared to existing policies.The network latency average of DOL is 7785.5,DLA is 5898.42,and SAD is 5789.43 whereas the NPBMT latency average is 3909.4.This reveals that the proposed policy keeps the messages for a short time in the network,which reduces the overhead ratio.展开更多
Different abnormalities are commonly encountered in computer network systems.These types of abnormalities can lead to critical data losses or unauthorized access in the systems.Buffer overflow anomaly is a prominent i...Different abnormalities are commonly encountered in computer network systems.These types of abnormalities can lead to critical data losses or unauthorized access in the systems.Buffer overflow anomaly is a prominent issue among these abnormalities,posing a serious threat to network security.The primary objective of this study is to identify the potential risks of buffer overflow that can be caused by functions frequently used in the PHP programming language and to provide solutions to minimize these risks.Static code analyzers are used to detect security vulnerabilities,among which SonarQube stands out with its extensive library,flexible customization options,and reliability in the industry.In this context,a customized rule set aimed at automatically detecting buffer overflows has been developed on the SonarQube platform.The memoization optimization technique used while creating the customized rule set enhances the speed and efficiency of the code analysis process.As a result,the code analysis process is not repeatedly run for code snippets that have been analyzed before,significantly reducing processing time and resource utilization.In this study,a memoization-based rule set was utilized to detect critical security vulnerabilities that could lead to buffer overflow in source codes written in the PHP programming language.Thus,the analysis process is not repeatedly run for code snippets that have been analyzed before,leading to a significant reduction in processing time and resource utilization.In a case study conducted to assess the effectiveness of this method,a significant decrease in the source code analysis time was observed.展开更多
Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP),of much interest owing to its high ionic conductivity,superior air stability,and low cost,has been regarded as one of the most promising solid-state electrolytes for next-gen...Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP),of much interest owing to its high ionic conductivity,superior air stability,and low cost,has been regarded as one of the most promising solid-state electrolytes for next-generation solid-state lithium batteries(SSLBs).Unfortunately,the commercialization of SSLBs is still impeded by severe interfacial issues,such as high interfacial impedance and poor chemical stability.Herein,we proposed a simple and convenient in-situ approach to constructing a tight and robust interface between the Li anode and LATP electrolyte via a SnO_(2)gradient buffer layer.It is firmly attached to the surface of LATP pellets due to the volume expansion of SnO_(2)when in-situ reacting with Li metal,and thus effectively alleviates the physical contact loosening during cycling,as confirmed by the mitigated impedance rising.Meanwhile,the as-formed SnO_(2)/Sn/LixSn gradient buffer layer with low electronic conductivity successfully protects the LATP electrolyte surface from erosion by the Li metal anode.Additionally,the LixSn alloy formed at the Li surface can effectively regulate uniform lithium deposition and suppress Li dendrite growth.Therefore,this work paves a new way to simultaneously address the chemical instability and poor physical contact of LATP with Li metal in developing low-cost and highly stable SSLBs.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12274108)the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LY23A040008 and LY23A040008)the Basic Scientific Research Project of Wenzhou,China (Grant No.G20220025)。
文摘Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.
基金the financial support by the National Natural Science Foundation of China(No.12272094)the Natural Science Foundation of Fujian Province of China(No.2022J01541)Natural Science Foundation of Hubei Province of China(No.2022CFB441)。
文摘An innovative metallic buffer consisting of series-connected hat-shaped entangled wire mesh damper(EWMD)and parallel springs are proposed in this work to enhance the reliability of engineering equipment.The impact response and the energy dissipation mechanism of hat-shaped EWMD under different quasi-static compression deformations(2-7 mm)and impact heights(100-200 mm)are investigated using experimental and numerical methods.The results demonstrate distinct stages in the quasi-static mechanical characteristics of hat-shaped EWMD,including stiffness softening,negative stiffness,and stiffness hardening.The loss factor gradually increases with increasing compression deformation before entering the stiffness hardening stage.Under impact loads,the hat-shaped EWMD exhibits optimal impact energy absorption when it enters the negative stiffness stage(150 mm),resulting in the best impact isolation effect of metallic buffer.However,the impact energy absorption significantly decreases when hat-shaped EWMD enters the stiffness hardening stage.Interestingly,quasi-static compression analysis after experiencing different impact loads reveals the disappearance of the negative stiffness phenomenon.Moreover,with increasing impact loads,the stiffness hardening point progressively shifts to an earlier stage.
文摘Two methods of irrigation,drip,and sprinkler were studied to determine the response of the Javits green roof to irrigation.The control study was dry unirrigated plots.Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout and sprinkler irrigation used a sprinkler system to irrigate the green roof from above.In all cases,the irrigated roofs had increased the soil moisture,reduced temperatures of both the upper and lower surfaces,reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof.The buffered temperature fluctuations were also studied via air conditioner energy consumption.There was a 28%reduction in air conditioner energy consumption and a 33%reduction in overall energy consumption between dry and irrigated plots.Values of thermal resistance or S were determined for accuracy and for this study,there was little change which is ideal.A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum.It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof.A Mann-Whitney U test was performed to verify the variation in moisture temperatures buffering energy consumption.By getting a p-value<0.05,it indicates that the model is accurate for prediction and medium temperatures were statistically different.
基金financially supported by the National Natural Science Foundation of China (22279083,22109166,52202183)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515011136,2022B1515120006,2023B1515120041,2414050001473)+3 种基金Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded SchemeGuangdong Provincial Key Laboratory Program (2021B1212040001)from the Department of Science and Technology of Guangdong ProvinceBeijing Institute of TechnologySongshan Lake Materials Laboratory。
文摘Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.
文摘This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously.
基金Sponsored by the Open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology(Grant No.HIT.KLOF.MST.201302)
文摘Recent advances in the application of the nonlinear energy sink under a sinusoidal excitation make it possible to investigate metal-rubber vibration absorber. To provide such a vibration absorber for the integrated spacecraft platform,we analyze the targeted energy transfer of the simplified model with nonlinear energy sink using the complex-variables averaging method. Theoretical study shows two quasi-periodic responses that are essentially different in this nonlinear system. The steady-state response which is one of two quasi-periodic responses is caused by the linear instability of system,and another one appears as a result of the nonlinear normal modes between the linear and nonlinear oscillators,resulting from the energy transfer of different oscillators,and it can be used to vibration absorber. Secondly,this paper also discusses the performance of the proposed nonlinear absorber by using the phase portraits. All conclusion derived by the analytic model is verified numerically and the results are consistent with numerical simulations.
基金supported by the National Natural Science Foundation of China(Grant No.52102436)the Fundamental Research Funds for the Central Universities(Grant No.30920021109)+3 种基金Natural Science Foundation of Jiangsu Province(BK20200496)China Postdoctoral Science Foundation(Grant No.2020M681615)the project of Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(Grant No.CJ202107)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(Grant No.MCMS-E-0221Y01)。
文摘Fluctuations in outer space's temperature would affect the spacecraft's regular operation.This paper aims to study the temperature influences of the aluminum honeycomb buffer in the tether-net launcher.Firstly,a buffer structure was designed to attenuate the pyroshock generated by the pyrotechnic device.Secondly,the mechanical properties of aluminum honeycomb at different temperatures were obtained through quasi-static compression experiments.Then,the internal ballistic responses of the launcher were gained by the closed bomb tests and the equivalent classical interior ballistic model.Finally,the recoil performance of the launcher with aluminum honeycomb buffer at different temperatures was studied.It is revealed that the aluminum honeycomb crushing force gradually decreases with the temperature increases.The peak pressure,burning rate coefficient and velocity increase while the peak time decreases with the temperature increase for the interior ballistics.For the launcher recoil responses,the average launch recoil decreases if the aluminum honeycomb doesn't enter the dense stage.The impact acceleration,projectile velocity and displacement increase as the temperature increase.The paper spotlights the temperature's influence on the recoil characteristics of the aluminum honeycomb buffer,which provides a new idea for buffering technology of pyrotechnic devices in a complex space environment.
文摘To detect the genome of viruses (in environmental and clinical samples), we use electrophoresis running buffer after PCR reaction. Also, electrophoresis buffers were used widely to separate any DNA molecule. In this paper, we used four types of previously known electrophoresis buffers to compare which is easy for preparation, simple in structure, low cost and good performance in agarose gel electrophoresis. For this, we used two agarose concentration (1%, 2%) and two types of DNA ladder (100 bp, 1 kb) represent both smaller and larger sizes of molecule for each type of buffers, from the result we found in first level both supper buffer and TAE buffer with good performance and in second level we found bicarbonate buffer also with good performance also. Finally, we found the tang buffer cannot pose any electrophoretic activity on DNA agarose gel electrophoresis.
文摘Essential oils of pure lavender and lavender blends have been employed as potential anxiolytic aromas in aromatherapy, but a direct comparison of their effectiveness is lacking. The current study investigated the effects of aroma on induced anxiety in non-clinical adults, comparing pure lavender, a commercially available blend and a no aroma control. An experimental, quantitative, mixed factorial design with an opportunity sample of 60 participants was employed. Participants were randomly allocated to three equal groups, one tested in a room infused with lavender aroma, the second with the doTerra Peace<sup>®</sup> blend, and the third free from any aroma. Participants’ state anxiety scores were measured before and after a novel video-based anxiety induction procedure. Data analysis revealed that the anxiety induction was successful and that both aromas delivered small to medium-sized buffering effects compared to no aroma. The findings add to a small body of research in an area where the practice is global yet has limited scientific evaluation. Future studies utilising brain imaging and blood serum analysis to investigate the anxiolytic mechanism of aromas would be beneficial to further our understanding.
文摘In copper oxide (CuO) based solar cells, various buffer layers such as CdS, In<sub>2</sub>S<sub>3</sub>, WS<sub>2</sub> and IGZO have been investigated by solar cell capacitance simulator (SCAPS) in this work. By varying absorber and buffer layer thickness, photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) are determined. The highest efficiency achieved is 19.6% with WS<sub>2</sub> buffer layer. The impact of temperature on all CuO-based solar cells is also investigated.
基金supported by Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(Grant Nos.Z211100007921022 and Z211100004821001)the National Natural Science Foundation of China(Grant Nos.62034008,62074142,62074140,61974162,61904172,61874175,62127807,and U21B2061)+3 种基金Key Research and Development Program of Jiangsu Province(Grant No.BE2021008-1)Beijing Nova Program(Grant No.202093)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43030101)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019115).
文摘GaN films grown on(111)Si substrate with different lattice parameters of the AlN buffer layer by metal–organic chemical vapor deposition are studied.The stress states obtained by different test methods are compared and it is found that the lattice parameter of the AlN buffer layer may have a significant effect on the stress state in the initial stage of subsequent GaN film growth.A larger compressive stress is beneficial to improved surface morphology and crystal quality of GaN film.The results of further orthogonal experiments show that an important factor affecting the lattice parameter is the growth rate of the AlN buffer layer.This work may be helpful for realizing simple GaN-on-Si structures and thus reducing the costs of growth processes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 62074037 and 52002073)the Fund from the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZZ124)。
文摘The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization of environmentally friendly and efficient CZTSSe solar cells. The Zn1-xMgxO(ZnMgO) and Zn1-xSnxO(ZnSnO) alternate buffer layers are studied in this study using the simulation package solar cell capacitance simulator(SCAPS-1D) numerical simulation model, and the theoretical analysis is further verified by the results of the experiments. We simulate the performance of CZTSSe/ZnXO(X = Mg/Sn) heterojunction devices with different Mg/(Zn+Mg) and Sn/(Zn+Sn) ratios and analyze the intrinsic mechanism of the effect of conduction band offsets(CBO) on the device performance. The simulation results show that the CZTSSe/ZnXO(X = Mg/Sn) devices achieve optimal performance with a small “spike” band or “flat” band at Mg and Sn doping concentrations of 0.1 and 0.2, respectively. To investigate the potential of Zn_(0.9)Mg_(0.1O) and Zn_(0.8)Sn_(0.2)O as alternative buffer layers, carrier concentrations and thicknesses are analyzed. The simulation demonstrates that the Zn0.9Mg0.1O device with low carrier concentration has a high resistivity, serious carrier recombination, and a greater impact on performance from thickness variation. Numerical simulations and experimental results show the potential of the ZnSnO buffer layer as an alternative to toxic CdS, and the ZnMgO layer has the limitation as a substitute buffer layer. This paper provides the theoretical basis and experimental proof for further searching for a suitable flexible CZTSSe Cd-free buffer layer.
文摘Natural forest ecosystems play an essential role in the conservation of biodiversity of many plants and animals by providing them with habitat and suitable environments. Studies have shown that biodiversity-protected areas reduce the loss and degradation of natural habitats to various wild species of plants. This study examined the forest resources in five subzones by conducting tree/shrub species inventory to be able to develop an effective forest management plan for the Buffer Zone Forest Reserve for the sustainable conservation of flora and fauna of Nimule National Park. This is with the view to identify the main tree and shrub species;assess the composition, distribution, and abundance of various tree/shrub species;to determine the species diversity as well as the richness of these areas in terms of growth and performance where DBH and heights of trees/shrubs in the circular sample plots were measured. The results revealed the overall mean DBH and H of 13.83 cm and 6.61 m respectively. The highest number of trees was obtained in subzone B followed by D, while the least were found in subzone A. The overall mean tree/shrub density was 0.83 tons/ha. The mean total basal area and volume per hectare were 3252.74 m<sup>2</sup>/ha and 46,540.82 m<sup>3</sup>/ha respectively. The overall species abundance and distribution indicate Combretum spp, Cedrella spp., Grewia mollis, Acacia Sieberiana, Ziziphus abysinica, and Acacia seyal were the most dominant species, with over 12 species richness at the deposition side of the River Nile, 13 species at the western side of the Nile, the Administration site shows only 7 species, the lowland of Mt. Gordon show over 14 different species, whereas over 10 species were found on the top of Mt. Gordon. The overall mean diversity indices and evenness of H’, D, and E depicted 2.507, 0.871, and 0.840 respectively. These results yielded are relatively moderate. Therefore, conservation efforts are very necessary to improve and maintain the quality of vegetation cover.
基金funded by Researchers Supporting Project Number(RSPD2023R947),King Saud University,Riyadh,Saudi Arabia.
文摘Delay Tolerant Networks(DTNs)have the major problem of message delay in the network due to a lack of endto-end connectivity between the nodes,especially when the nodes are mobile.The nodes in DTNs have limited buffer storage for storing delayed messages.This instantaneous sharing of data creates a low buffer/shortage problem.Consequently,buffer congestion would occur and there would be no more space available in the buffer for the upcoming messages.To address this problem a buffer management policy is proposed named“A Novel and Proficient Buffer Management Technique(NPBMT)for the Internet of Vehicle-Based DTNs”.NPBMT combines appropriate-size messages with the lowest Time-to-Live(TTL)and then drops a combination of the appropriate messages to accommodate the newly arrived messages.To evaluate the performance of the proposed technique comparison is done with Drop Oldest(DOL),Size Aware Drop(SAD),and Drop Larges(DLA).The proposed technique is implemented in the Opportunistic Network Environment(ONE)simulator.The shortest path mapbased movement model has been used as the movement path model for the nodes with the epidemic routing protocol.From the simulation results,a significant change has been observed in the delivery probability as the proposed policy delivered 380 messages,DOL delivered 186 messages,SAD delivered 190 messages,and DLA delivered only 95 messages.A significant decrease has been observed in the overhead ratio,as the SAD overhead ratio is 324.37,DLA overhead ratio is 266.74,and DOL and NPBMT overhead ratios are 141.89 and 52.85,respectively,which reveals a significant reduction of overhead ratio in NPBMT as compared to existing policies.The network latency average of DOL is 7785.5,DLA is 5898.42,and SAD is 5789.43 whereas the NPBMT latency average is 3909.4.This reveals that the proposed policy keeps the messages for a short time in the network,which reduces the overhead ratio.
文摘Different abnormalities are commonly encountered in computer network systems.These types of abnormalities can lead to critical data losses or unauthorized access in the systems.Buffer overflow anomaly is a prominent issue among these abnormalities,posing a serious threat to network security.The primary objective of this study is to identify the potential risks of buffer overflow that can be caused by functions frequently used in the PHP programming language and to provide solutions to minimize these risks.Static code analyzers are used to detect security vulnerabilities,among which SonarQube stands out with its extensive library,flexible customization options,and reliability in the industry.In this context,a customized rule set aimed at automatically detecting buffer overflows has been developed on the SonarQube platform.The memoization optimization technique used while creating the customized rule set enhances the speed and efficiency of the code analysis process.As a result,the code analysis process is not repeatedly run for code snippets that have been analyzed before,significantly reducing processing time and resource utilization.In this study,a memoization-based rule set was utilized to detect critical security vulnerabilities that could lead to buffer overflow in source codes written in the PHP programming language.Thus,the analysis process is not repeatedly run for code snippets that have been analyzed before,leading to a significant reduction in processing time and resource utilization.In a case study conducted to assess the effectiveness of this method,a significant decrease in the source code analysis time was observed.
基金financially supported by the China Postdoctoral Science Foundation(2021M700396)the National Natural Science Foundation of China(52102206)the research grants from the National Research Foundation(2022K1A3A1A20014496 and 2022R1F1A1074707)funded by the government of the Republic of Korea。
文摘Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP),of much interest owing to its high ionic conductivity,superior air stability,and low cost,has been regarded as one of the most promising solid-state electrolytes for next-generation solid-state lithium batteries(SSLBs).Unfortunately,the commercialization of SSLBs is still impeded by severe interfacial issues,such as high interfacial impedance and poor chemical stability.Herein,we proposed a simple and convenient in-situ approach to constructing a tight and robust interface between the Li anode and LATP electrolyte via a SnO_(2)gradient buffer layer.It is firmly attached to the surface of LATP pellets due to the volume expansion of SnO_(2)when in-situ reacting with Li metal,and thus effectively alleviates the physical contact loosening during cycling,as confirmed by the mitigated impedance rising.Meanwhile,the as-formed SnO_(2)/Sn/LixSn gradient buffer layer with low electronic conductivity successfully protects the LATP electrolyte surface from erosion by the Li metal anode.Additionally,the LixSn alloy formed at the Li surface can effectively regulate uniform lithium deposition and suppress Li dendrite growth.Therefore,this work paves a new way to simultaneously address the chemical instability and poor physical contact of LATP with Li metal in developing low-cost and highly stable SSLBs.