期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Substrate matters:The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes 被引量:5
1
作者 Jie Li,Mingjie Wei YongWang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第11期1676-1684,共9页
Thin-film composite(TFC) reverse osmosis(RO) membranes are playing the dominating role in desalination.Tremendous efforts have been put in the studies on the polyamide selective layers. However, the effect of the subs... Thin-film composite(TFC) reverse osmosis(RO) membranes are playing the dominating role in desalination.Tremendous efforts have been put in the studies on the polyamide selective layers. However, the effect of the substrate layers is far less concerned. In this review, we summarize the works that consider the impacts of the substrates, including pore sizes, surface hydrophilicity, on the processes of interfacial polymerization and consequently on the morphologies of the active layers and on final RO performances of the composite membranes. All the works indicate that the pore sizes and surface hydrophilicity of the substrate evidently influence the RO performances of the composite membranes. Unfortunately, we find that the observations and understandings on the substrate effect are frequently varied from case to case because of the lack of substrates with uniform pores and surface chemistries. We suggest using track-etched membranes or anodized alumina membranes having relatively uniform pores and functionalizable pore walls as model substrates to elucidate the substrate effect.Moreover, we argue that homoporous membranes derived from block copolymers have the potential to be used as substrates for the large-scale production of high-performances TFC RO membranes. 展开更多
关键词 Reverse osmosis thin-film composite INTERRACIAL POLYMERIZATION Homoporous membranes Sobstrate effect
下载PDF
High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO_2 selective layer formation 被引量:1
2
作者 Stepan D.Bazhenov Ilya L.Borisov +4 位作者 Danila S.Bakhtin Anastasia N.Rybakova Valery S.Khotimskiy Sergey P.Molchanov Vladimir V.Volkov 《Green Energy & Environment》 SCIE 2016年第3期235-245,共11页
In the development of the composite gas separation membranes for post-combustion CO_2 capture, little attention is focused on the optimization of the membrane supports, which satisfy the conditions of this technology.... In the development of the composite gas separation membranes for post-combustion CO_2 capture, little attention is focused on the optimization of the membrane supports, which satisfy the conditions of this technology. The primary requirements to the membrane supports are concerned with their high CO_2 permeance. In this work, the membrane supports with desired characteristics were developed as high-permeance gas separation thin film composite(TFC) membranes with the thin defect-free layer from the crosslinked highly permeable polymer, poly[1-(trimethylsilyl)-1-propyne](PTMSP). This layer is insoluble in chloroform and can be used as a gutter layer for the further deposition of the CO_2-selective materials from the organic solvents. Crosslinking of PTMSP was performed using polyethyleneimine(PEI) and poly(ethyleneglycol) diglycidyl ether(PEGDGE) as crosslinking agents. Optimal concentrations of PEI in PTMSP and PEGDGE in methanol were selected in order to diminish the undesirable effect on the final membrane gas transport characteristics. The conditions of the kiss-coating technique for the deposition of the thin defect-free PTMSP-based layer, namely, composition of the casting solution and the speed of movement of the porous commercial microfiltration-grade support, were optimized. The procedure of post-treatment with alcohols and alcohol solutions was shown to be crucial for the improvement of gas permeance of the membranes with the crosslinked PTMSP layer having thickness ranging within 1-2.5 μm. The claimed membranes showed the following characteristics: CO_2 permeance is equal to 50—54 m^3(STP)/(m^2 h bar)(18,500—20,000 GPU), ideal CO_2/N_2 selectivity is 3.6-3.7, and their selective layers are insoluble in chloroform. Thus, the developed highpermeance TFC membranes are considered as a promising supports for further modification by enhanced CO_2 selective layer formation. 展开更多
关键词 thin-film composite membrane Gas permeance PTMSP CROSSLINKING Carbon dioxide capture
下载PDF
Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate
3
作者 Yuanyuan Jin Siping Ding +1 位作者 Peiyun Li Xuefen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期111-121,共11页
The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal fu... The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal function.Herein,we proposed a novel strategy of thin-film nanofibrous composite(TNFC)dialysis membrane combined with reduced graphene oxide(rGO)aerogel adsorbents for clinical removal of IS as well as high retention of proteins.The TFNC membrane was prepared by electrospinning in conjunction with coating-reaction method and proved to have good selectivity and permeability.To further improve the removal rate of toxins,we used a medium hydrothermal method following by freeze-drying treatment to obtain the r GO aerogel adsorbents.It exhibited excellent adsorption for IS with a maximum adsorption capacity of 69.40 mg·g^(-1)throughπ-πinteraction and hydrogen bonding interaction based on Langmuir isotherm models.Time-dependent absorption experiments showed that it reached adsorption equilibrium within 4 h,which was matched with the hemodialysis time.The coordination was significantly exhibited by introducing r GO aerogel blocks into the dialysate for absorbing the diffused free IS during hemodialysis.Taking the advantages of the TFNC dialysis membrane and the rGO aerogel,the volume of dialysate for hemodialysis was only one-tenth of that without adsorbent blocks but with very comparable dialysis performance(the clearance of IS at 51.8%and the retention of HSA over 98%),which could lighten conventional hemodialysis effectively and be benefit to realize the miniaturization of the hemodialysis equipment.Therefore,the coordination of the TFNC dialysis membrane and rGO aerogel adsorbents would open a new path for the development of portable artificial kidney. 展开更多
关键词 Indoxyl sulfate thin-film nanofibrous composite membrane rGO aerogel adsorbents HEMODIALYSIS COORDINATION Portable artificial kidney
下载PDF
The Model for Linear Magnetoresistance of Two-Dimensional Metal-Semiconductor Composites with Interfacial Shells
4
作者 徐洁 王国栋 +2 位作者 李山东 李强 高小洋 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期123-127,共5页
A metal-semiconductor composite with the interracial shells is investigated theoretically for the large linear mag- netoresistance effect of high doping Ag2+δ Se and Ag2+δ te materials. The magnetoresistance (MR... A metal-semiconductor composite with the interracial shells is investigated theoretically for the large linear mag- netoresistance effect of high doping Ag2+δ Se and Ag2+δ te materials. The magnetoresistance (MR) of composites is a function of the magnetic field, temperature, the conductivities of two phases without magnetic field, and the thickness and conductivity of the interracial shells. The MR increases with the increase of the magnetic field and with the decrease of temperature, and no saturation is found even under the high magnetic field. Moreover, it is interestingly found that the interracial shell is an important factor for the MR of the composites. The MR increases with the thickness and the conductivity of the interfacial shells. Lastly, the theoretical results on the MR are compared with the experimental data. It is found that the value of the MR of the composite with the interfacial shell is larger than that without the interfacial shell. 展开更多
关键词 The Model for Linear Magnetoresistance of Two-Dimensional metal-semiconductor composites with Interfacial Shells Ag MR
下载PDF
Thickness Effect on (La_(0.26)Bi_(0.74))_2Ti_4O_(11) Thin-Film Composition and Electrical Properties
5
作者 郭会珍 江安全 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第2期66-70,共5页
Highly oriented(00l)(La_(0.26)Bi_(0.74))_2Ti_4O_(11 )thin films are deposited on(100) SrTiO_(3 )substrates using the pulsed laser deposition technique.The grains form a texture of bar-like arrays along S... Highly oriented(00l)(La_(0.26)Bi_(0.74))_2Ti_4O_(11 )thin films are deposited on(100) SrTiO_(3 )substrates using the pulsed laser deposition technique.The grains form a texture of bar-like arrays along Sr Ti O_3110directions for the film thickness above 350 nm,in contrast to spherical grains for the reduced film thickness below 220 nm.X-ray diffraction patterns show that the highly ordered bar-like grains are the ensemble of two lattice-matched monoclinic(La,Bi)_4Ti_3O_(12 )and TiO_(2 )components above a critical film thickness.Otherwise,the phase decomposes into the random mixture of Bi_2Ti_2O_(7 )and Bi_4Ti_3O_(4 )spherical grains in thinner films.The critical thickness can increase up to 440 nm as the films are deposited on LaNiO_3-buffered SrTiO_(3 )substrates.The electrical measurements show the dielectric enhancement of the multi-components,and comprehensive charge injection into interfacial traps between(La,Bi)_4Ti_3O_(12 )and TiO_(2 )components occurs under the application of a threshold voltage for the realization of high-charge storage. 展开更多
关键词 BI TI thin-film composition and Electrical Properties LNO LA
下载PDF
Fabrication of novel thin-film composite membrane based on ultrathin metal-organic framework interlayer for enhancing forward osmosis performance
6
作者 Hao Liu Bo Li +5 位作者 Pin Zhao Rongming Xu Chuyang Y.Tang Weilong Song Zunaira Habib Xinhua Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期305-309,共5页
To improve operation efficiency,an interlayered thin-film composite forward osmosis(iTFC-FO)membrane was designed by introducing an ultrathin and porous interlayer based on aluminum tetra-(4-carboxyphenyl)porphyrin(a ... To improve operation efficiency,an interlayered thin-film composite forward osmosis(iTFC-FO)membrane was designed by introducing an ultrathin and porous interlayer based on aluminum tetra-(4-carboxyphenyl)porphyrin(a stable metal-organic framework nanosheet,Al-MOF).Surface characterization results revealed that Al-MoF spread evenly in the macro-porous substrate,and provided a flat and smooth reaction interface with moderate hydrophilicity and uniform small aperture.The resultant polyamide(PA)layer had a thin base(without intrusion into substrate)and crumpled surface(with abundant leaves).The leaves size and cross-linking degree of PA layer firstly increased and then decreased with the Al-MOF loading.Compared to the original membrane,the iTFC-FO showed an enhanced water permeability and a reduced reverse sodium flux in both modes of active layer facing feed solution(ALFS)and active layer facing draw solution(AL-DS).To be specific,the specific reverse sodium flux(reverse sodium flux/pure water flux)decreased from 0.27 g/L to 0.04 g/L in the AL-FS mode,while from 1.36 g/L to 0.23 g/L in the AL-DS mode with 2 mol/L NaCl as DS.Moreover,the iTFC-FO maintained high stability and high permeability under high-salinity and contaminated environment.This study offers a new possibility for the rational fabrication of high-performance TFC-FO membranes. 展开更多
关键词 thin-film composite embrane Forward osmosis 2Dmetal-organic ramework Porous interlayer Membrane prformance
原文传递
Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate 被引量:4
7
作者 Baicang Liu Chen Chen +5 位作者 Pingju Zhao Tong Li Caihong Liu Qingyuan Wang Yongsheng Chen John Crittenden 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2016年第4期562-574,共13页
To advance commercial application of forward osmosis (FO), we investigated the effects of two additives on the performance of polysulfone (PSf) based FO membranes: one is poly(ethylene glycol) (PEG), and anot... To advance commercial application of forward osmosis (FO), we investigated the effects of two additives on the performance of polysulfone (PSf) based FO membranes: one is poly(ethylene glycol) (PEG), and another is PSf grafted with PEG methyl ether methacrylate (PSf-g-PEGMA). PSf blended with PEG or PSf-g- PEGMA was used to form a substrate layer, and then polyamide was formed on a support layer by interfacial polymerization. In this study, NaC1 (1 mol·L^-1) and deionized water were used as the draw solution and the feed solution, respectively. With the increase of PEG content from 0 to 15 wt-%, FO water flux declined by 23.4% to 59.3% compared to a PSf TFC FO membrane. With the increase of PSf-g-PEGMA from 0 to 15 wt-%, the membrane flux showed almost no change at first and then declined by about 52.0% and 50.4%. The PSfwith 5 wt-% PSf-g-PEGMA FO membrane showed a higher pure water flux of 8.74 L·m^-2·h^-1 than the commercial HTI membranes (6-8 L·m^-2·h^-1) under the FO mode. Our study suggests that hydrophobic interface is very important for the formation ofpolyamide, and a small amount of PSf- g-PEGMA can maintain a good condition for the formation of polyamide and reduce internal concentration polarization. 展开更多
关键词 thin-film composite forward osmosis amphi-philic copolymer interfacial polymerization poly(ethyleneglycol)
原文传递
Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane 被引量:2
8
作者 Meibo He Zhuang Liu +3 位作者 Tong Li Chen Chen Baicang Liu John C.Crittenden 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2019年第2期400-414,共15页
Thin-film composite (TFC) nanofiltration (NF) membranes were fabricated via the interfacial polymerization of piperazine (PIP) and 1,3,5-benzenetricart)oiiyl trichloride on polysulfone (PSf) support membranes blended ... Thin-film composite (TFC) nanofiltration (NF) membranes were fabricated via the interfacial polymerization of piperazine (PIP) and 1,3,5-benzenetricart)oiiyl trichloride on polysulfone (PSf) support membranes blended with K^+-responsive poly(N-isopropylacryamideco- acryloylamidobenzo-15-crown-5)(P(NIPAM-co- AAB15C5)). Membranes were characterized by attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscope, contact angle, and filtration tests. The results showed that:(1) Under K^+-free conditions, the blended P(NIPAM-co-AAB15C5)/PSf supports had porous and hydrophilic surfaces, thereby producing NF membranes with smooth surfaces and low MgSO4 rejections;(2) With K^+ in the PIP solution, the surface roughness and water permeability of the resultant NF membrane were increased due to the K^+-induced transition of low-content P(NIPAM-co-AAB15C5) from hydrophilic to hydrophobic;(3) After a curing treatment at 95℃, the improved NF membrane achieved an even higher pure water permeability of 10.97 L·m^-2·h^-1 - bar1 under 200 psi. Overall, this study provides a novel method to improve the performance of NF membranes and helps understand the influence of supports on TFC membranes. 展开更多
关键词 NANOFILTRATION interfacial polymerization SUPPORT MEMBRANE potassium ion-responsive thin-film composite
原文传递
Enhancing Dehydration Performance of Isopropanol by Introducing Intermediate Layer into Sodium Alginate Nanofibrous Composite Pervaporation Membrane 被引量:2
9
作者 Peiyun Li Cheng Cheng +3 位作者 Ke Shen Tonghui Zhang Xuefen Wang Benjamin S.Hsiao 《Advanced Fiber Materials》 CAS 2019年第2期137-151,共15页
A novel three-tier composite membrane based on highly porous nanofibrous substrate was demonstrated for efficient iso-propanol dehydration by pervaporation.Here,polyethyleneimine(PEI)modified graphene oxide(GO)sheets ... A novel three-tier composite membrane based on highly porous nanofibrous substrate was demonstrated for efficient iso-propanol dehydration by pervaporation.Here,polyethyleneimine(PEI)modified graphene oxide(GO)sheets were vacuum-assistant assembled onto porous electrospun polyacrylonitrile(PAN)nanofibrous substrate to achieve a smooth,hydrophilic and compact PEI-GO intermediate layer.The introduction of PEI chains endowed GO interlayer with sufficient interaction for bonding adjacent GO nanosheets to enhance stability in water/isopropanol mixture and also with the ascended inter-lamellar space to improve the water-sorption ability due to the abundant active amino groups.Benefiting from PEI-GO layer,a defect-free sodium alginate(SA)skin layer could be facilely manufactured with elaborately controlled thickness as thin as possible in order to reduce mass transfer resistant and enhance permeability maximally.Meanwhile,the interlayer would also contribute to enhance interfacial adhesion to promote the structure integrity of three-tier thin-film nanofibrous composite(TFNC)membrane in pervaporation dehydration process.After fine-tuning of membrane preparation process,the SA/PEI(75)-GO-60/PAN TFNC membrane exhibited competitive pervaporation performance with the permeate flux of 2009 g/m2 h and the separation factor of 1276 operated at 70°C for dehydration of 90 wt%isopropanol solution.The unique three-tier composite membrane structure suggested an effective and facile approach to design novel membrane structure for further improvement of pervaporation performance. 展开更多
关键词 Polyethyleneimine modified graphene oxide Intermediate layer thin-film nanofibrous composite membrane Pervaporation membrane
原文传递
Surface and Interface Engineering for Advanced Nanofiltration Membranes
10
作者 Bian-Bian Guo Cheng-Ye Zhu Zhi-Kang Xu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第2期124-137,共14页
Nanofiltration has been attracting great attention in alleviating the global water crisis because of its high efficiency,mild operation,and strong adaptability.Over decades,it remains a challenge to break the upper li... Nanofiltration has been attracting great attention in alleviating the global water crisis because of its high efficiency,mild operation,and strong adaptability.Over decades,it remains a challenge to break the upper limit of performance and establish the formation-structureproperty relationship for nanofiltration membranes.This feature article summarizes our recent progress in the preparation of high-performance thin-film composite(TFC)nanofiltration membranes,focusing on the mussel-inspired deposition method and the optimized interfacial polymerization(IP).By accelerating the oxidation of polydopamine and equilibrating the rate of aggregation and deposition processes,the mussel-inspired deposition method realizes the rapid and uniform formation of selective coatings or nanofilms.Diverse deposition systems endow the selective layer with rich chemical structures and easy post-functionalization,highlighting its potential in water treatment.As for optimizing the conventional IP,the rapid polycondensation of amine and acid chloride groups is slowed down to enable the controllability of IP at the water-organic interface.The homogeneity and integrity of the TFC membranes are improved by constructing a uniform reaction platform and introducing a viscous medium to control the amine diffusion,which facilitates the water permeability and promotes the separation efficiency.We have proposed a series of practical strategies for improving TFC membranes and might provide more inspiration for other nanofiltration techniques. 展开更多
关键词 NANOFILTRATION thin-film composite membranes Mussel-inspired deposition Interfacial polymerization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部