Metal-organic frameworks(MOFs) possess the features of highly porosity-tunable and electronic-tunable structures,. Taking advantages of these merits, we successfully installed high-valence W6+ions onto the Ti-oxo clus...Metal-organic frameworks(MOFs) possess the features of highly porosity-tunable and electronic-tunable structures,. Taking advantages of these merits, we successfully installed high-valence W6+ions onto the Ti-oxo clusters of MIL-125(Ti)(W-MIL-125). The installed W^(6+) ions which form a W–O–Ti structure trigger the metal-to-cluster charge transfer(MCCT), together with an enhanced light absorption.Structural and spectroscopic characterizations reveal that the MCCT process optimizes the charge transfer process and efficiently separates the photogenerated electron-hole spatially.The as-obtained sample of 3.45 W-MIL-125 with optimized electronic structure demonstrates an enhanced photocatalytic hydrogen evolution performance of 1110.7 ± 63.7 μmol g^(-1)h^(-1) under light irradiation, which is 4.0 times that of the pristine MIL-125(Ti). This work will open up a new avenue for local structural modification of MOFs to boost photocatalytic performance.展开更多
基金financially supported by the National Natural Science Funds for Distinguished Young Scholars (51725201)the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China (51920105003)+6 种基金the Innovation Program of Shanghai Municipal Education Commission (E00014)China Postdoctoral Science Foundation Funded Project (2020M681201)Shanghai Engineering Research Center of Hierarchical Nanomaterials (18DZ2252400)the Fundamental Research Funds for the Central Universities (JKD01211519)the support by Shanghai Rising-star Program (20QA1402400)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningprovided by the Feringa Nobel Prize Scientist Joint Research Center。
文摘Metal-organic frameworks(MOFs) possess the features of highly porosity-tunable and electronic-tunable structures,. Taking advantages of these merits, we successfully installed high-valence W6+ions onto the Ti-oxo clusters of MIL-125(Ti)(W-MIL-125). The installed W^(6+) ions which form a W–O–Ti structure trigger the metal-to-cluster charge transfer(MCCT), together with an enhanced light absorption.Structural and spectroscopic characterizations reveal that the MCCT process optimizes the charge transfer process and efficiently separates the photogenerated electron-hole spatially.The as-obtained sample of 3.45 W-MIL-125 with optimized electronic structure demonstrates an enhanced photocatalytic hydrogen evolution performance of 1110.7 ± 63.7 μmol g^(-1)h^(-1) under light irradiation, which is 4.0 times that of the pristine MIL-125(Ti). This work will open up a new avenue for local structural modification of MOFs to boost photocatalytic performance.