A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radia...A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radiation, and convection. A formula for the calculation of the heat conductivity of a sintering system containing solid phase, liquid phase, and gas phase is given. Due to the continuous movement of the laser beam, a local coordinate system centered on the laser beam is used to simplify the analytical calculation. Assuming that it is approximately a Gaussian laser beam, the heat conduction equation is resolved based on the assumption of the thermal insulating boundary conditions and the fixed thermal physical parameters. The FORTRAN language is employed to compile the program to simulate the temperature field in the direct copper powder sintering process. It shows a good agreement with the preliminary experimental results.[KH3/4D]展开更多
To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS proce...To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS.展开更多
Flexible forming of laminated-composite metal sheets (LCMS) using plasma arc is a latest technique, which produces LCMS components by thermal stress without mould and external force. Considering that the controllable ...Flexible forming of laminated-composite metal sheets (LCMS) using plasma arc is a latest technique, which produces LCMS components by thermal stress without mould and external force. Considering that the controllable temperature field is the key during the forming process, a three-layer FEM model, based on the characteristics along LCMS thickness direction, was developed to study the variation rules of temperature field, which was verified robustness by experimental validation. Besides, the influences of process parameters such as plasma arc power, scanning speed and plasma arc diameter on LCMS temperature field were performed. The comparisons of LCMS with single layer metal sheet (SLMS) show the temperature difference of LCMS along thickness direction is smaller than that of SLMS, but the heat-affected zone of LCMS along X axis is wider than that of SLMS under the same process parameters.展开更多
The effect of reinforcement on the solidification of pure metal matrix composites (MMCs) was simulated using a two-dimensional solidification temperature field model by the finite element method. The concept of the ch...The effect of reinforcement on the solidification of pure metal matrix composites (MMCs) was simulated using a two-dimensional solidification temperature field model by the finite element method. The concept of the character length was proposed to describe the size of reinforcement local heat influential zone in MMCs solidification according to the change of the morphologies of solid-liquid interface. The relationship between the character length and the geometrical conditions, the boundary condition and physical properties of the reinforcement were studied, respectively. The results show that the width of the unit and the cold boundary temperature have no effect on the character lengths but have effect on the distance between cold boundary and reinforcement (l) and the thermal parameters of the reinforcement. An experimental rule to predict the value of the character length was derived and applied.展开更多
利用大型通用有限元软件ABAQUS对铝钢异种金属CMT(cold metal transfer)焊接温度场分布进行数值模拟.计算过程中,采用双椭球热源和高斯热源分别考虑实际焊接时电弧加热和熔滴引入的热量对温度分布的影响.实验结果表明:在特定的工艺参数...利用大型通用有限元软件ABAQUS对铝钢异种金属CMT(cold metal transfer)焊接温度场分布进行数值模拟.计算过程中,采用双椭球热源和高斯热源分别考虑实际焊接时电弧加热和熔滴引入的热量对温度分布的影响.实验结果表明:在特定的工艺参数下,熔池中心的温度为960℃,计算所得到的热循环曲线和试验测得的热循环曲线取得较好的一致.镀锌钢板背面锌熔化的宽度为11mm,与实验结果吻合,所建立的热源模型也是合理的.展开更多
文摘A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radiation, and convection. A formula for the calculation of the heat conductivity of a sintering system containing solid phase, liquid phase, and gas phase is given. Due to the continuous movement of the laser beam, a local coordinate system centered on the laser beam is used to simplify the analytical calculation. Assuming that it is approximately a Gaussian laser beam, the heat conduction equation is resolved based on the assumption of the thermal insulating boundary conditions and the fixed thermal physical parameters. The FORTRAN language is employed to compile the program to simulate the temperature field in the direct copper powder sintering process. It shows a good agreement with the preliminary experimental results.[KH3/4D]
文摘To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS.
基金Projects(50775019,50675072) supported by the National Natural Science Foundation of ChinaProject(20062178) supported by the Natural Science Foundation of Liaoning Province,China
文摘Flexible forming of laminated-composite metal sheets (LCMS) using plasma arc is a latest technique, which produces LCMS components by thermal stress without mould and external force. Considering that the controllable temperature field is the key during the forming process, a three-layer FEM model, based on the characteristics along LCMS thickness direction, was developed to study the variation rules of temperature field, which was verified robustness by experimental validation. Besides, the influences of process parameters such as plasma arc power, scanning speed and plasma arc diameter on LCMS temperature field were performed. The comparisons of LCMS with single layer metal sheet (SLMS) show the temperature difference of LCMS along thickness direction is smaller than that of SLMS, but the heat-affected zone of LCMS along X axis is wider than that of SLMS under the same process parameters.
文摘The effect of reinforcement on the solidification of pure metal matrix composites (MMCs) was simulated using a two-dimensional solidification temperature field model by the finite element method. The concept of the character length was proposed to describe the size of reinforcement local heat influential zone in MMCs solidification according to the change of the morphologies of solid-liquid interface. The relationship between the character length and the geometrical conditions, the boundary condition and physical properties of the reinforcement were studied, respectively. The results show that the width of the unit and the cold boundary temperature have no effect on the character lengths but have effect on the distance between cold boundary and reinforcement (l) and the thermal parameters of the reinforcement. An experimental rule to predict the value of the character length was derived and applied.
文摘利用大型通用有限元软件ABAQUS对铝钢异种金属CMT(cold metal transfer)焊接温度场分布进行数值模拟.计算过程中,采用双椭球热源和高斯热源分别考虑实际焊接时电弧加热和熔滴引入的热量对温度分布的影响.实验结果表明:在特定的工艺参数下,熔池中心的温度为960℃,计算所得到的热循环曲线和试验测得的热循环曲线取得较好的一致.镀锌钢板背面锌熔化的宽度为11mm,与实验结果吻合,所建立的热源模型也是合理的.