期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reactive synthesis Ti (CN) -based metal ceramic coating by electric-spark deposition 被引量:1
1
作者 郝建军 马璐萍 +2 位作者 李建昌 赵建国 马跃进 《China Welding》 EI CAS 2009年第3期46-50,共5页
Electric-spark deposition (ESD) was adopted for depositing a Ti( CN) -based ceramic coating on the TC4 titanium alloy substrate using a laboratory-developed electric-spark deposition system, a nitrogen-sealed atmo... Electric-spark deposition (ESD) was adopted for depositing a Ti( CN) -based ceramic coating on the TC4 titanium alloy substrate using a laboratory-developed electric-spark deposition system, a nitrogen-sealed atmosphere and graphite electrode. The surface morphology, microstructure, interfacial behavior between the coatings and substrate, phase and element composition of the coatings were investigated by scanning electron microscope ( SEM ) , X-ray diffraction ( XRD ) , X-ray photoelectron spectroscopy ( XPS ) and Auger electron spectroscopy ( AES ) . Microhardness profile was measured with a Vickers microhardness tester. The results show that metallurgical bond between the coating and substrate is realized and the phase of coatings are made up of Ti( CN ) spherocrystal and dendritic crystal, TiV and C. Ti( CN) ceramic particles, which is in-situ synthesized by the reaction among titanium from the substrate, carbon from the graphite electrode and nitrogen from the shielding nitrogen gas, is about 600 mn and distributes dispersively among the coatings. Microharduess profile falls off with the coatings thickness increasing and the highest microhardness values of the superficial coating could be up to 1 496HV, which is six times more than that of the substrate. 展开更多
关键词 electric-spark deposition reactive synthesis Ti(CN)-based metal ceramic coating
下载PDF
Ceramics Surface Modification by Excimer Laser Metal Coating
2
作者 Weidou ZHU and Haicheng GU(Dept. of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第6期463-465,共3页
Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy densi... Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy density was varied from 0.21 to 0.81 J / cm2 to optimize bending strength. For ZrO2 ceramic, it was found that the strength increases from 530 to 753 MPa at 0.51 J / cm2 irradiation. For Al2O3 and (Ce-TZP)+ Al2O3 the fracture strength also increases in varying degree. The causes of strength increment were discussed. 展开更多
关键词 ceramics Surface Modification by Excimer Laser Metal coating RES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部