Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In ...Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In recent decades,additive manufacturing(AM)technology has garnered attention as a potential way for fabricating MMCs.This article provides a comprehensive review of recent endeavors and progress in AM of MMCs,encompassing available AM technologies,types of reinforcements,feedstock preparation,synthesis principles during the AM process,typical AM-produced MMCs,strengthening mechanisms,challenges,and future interests.Compared to conventionally manufactured MMCs,AM-produced MMCs exhibit more uniformly distributed reinforcements and refined microstructure,resulting in comparable or even better mechanical properties.In addition,AM technology can produce bulk MMCs with significantly low porosity and fabricate geometrically complex MMC components and MMC lattice structures.As reviewed,many AM-produced MMCs,such as Al matrix composites,Ti matrix composites,nickel matrix composites,Fe matrix composites,etc,have been successfully produced.The types and contents of reinforcements strongly influence the properties of AM-produced MMCs,the choice of AM technology,and the applied processing parameters.In these MMCs,four primary strengthening mechanisms have been identified:Hall–Petch strengthening,dislocation strengthening,load transfer strengthening,and Orowan strengthening.AM technologies offer advantages that enhance the properties of MMCs when compared with traditional fabrication methods.Despite the advantages above,further challenges of AM-produced MMCs are still faced,such as new methods and new technologies for investigating AM-produced MMCs,the intrinsic nature of MMCs coupled with AM technologies,and challenges in the AM processes.Therefore,the article concludes by discussing the challenges and future interests of AM of MMCs.展开更多
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing...Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.展开更多
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced i...Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced in this work by a modified accumulative roll bonding process where the strips were rotated 90° around the normal direction between successive passes. Transmission electron microscopy and X-ray diffraction analyses reveal the development of nanostructures in the Al matrix after seven passes. It is found that the B4C reinforcement distribution in the matrix is improved by progression of the process. Additionally, the tensile yield strength and elongation of the processed materials are increased with the increase of passes.展开更多
(Zr41.2Ti13.sCu12.sNi10Be22.5)100-~Nb~ (at%, x=0 and 8) bulk metallic glasses (BMGs) were coated on the surface of Q195 steel wires by a continuous coating process. The potentiodynamic polarization tests of thes...(Zr41.2Ti13.sCu12.sNi10Be22.5)100-~Nb~ (at%, x=0 and 8) bulk metallic glasses (BMGs) were coated on the surface of Q195 steel wires by a continuous coating process. The potentiodynamic polarization tests of these BMGs were conducted in 3.5wt% NaC1 aqueous solution. It is found that the addition of 8at% Nb into Zr41.2Ti13.sCu12.sNi10Be22.5 alloy results in the improvement of corrosion resistance with the pitting potential of -52 mV, the open circuit potential of-446 mV, and the corrosion current density of 9.86x 10-6 mA/cm2. This may be attributed to that Nb is beneficial to passivate and stabilize Zr and Ti.展开更多
The unusual glass-forming ability(GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported.The bulk metallic glass rod with a ...The unusual glass-forming ability(GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported.The bulk metallic glass rod with a diameter of 25 mm was successfully synthesized using copper mold casting for the Zr48Cu36Ag8Al8 alloy.High GFA of this alloy was found to be related to a large supercooled liquid region and a quaternary eutectic point with low melting temperature.The bulk metallic glass matrix composites were prepared by introducing extra Ta particles into the Zr48Cu36Ag8Al8 melt.The composites consist of Ta particles homogenously distributed in the Zr48Cu36Ag8Al8 metallic glass matrix.The optimum content of Ta powder is 10at%for the composite with the highest plasticity,which shows a plastic strain of 31%.展开更多
Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 a...Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.展开更多
Cu47Ti34Zr11Ni8 bulk metallic glass (BMG) matrix composites containing in situ formed TiC particles and 5-TiCu dendrite phase were developed by copper mold cast. The thermal stability and microstructure of the compo...Cu47Ti34Zr11Ni8 bulk metallic glass (BMG) matrix composites containing in situ formed TiC particles and 5-TiCu dendrite phase were developed by copper mold cast. The thermal stability and microstructure of the composites are investigated. Room temperature compression tests reveal that the composite samples exhibit higher fracture strength and distinct plastic strain of 0.2%-0.5%, comparing with that of the corresponding Cu47Ti34Zr11Ni8 monolithic BMG.展开更多
The effect of the cooling slope on the structure of Zr-based metallic glass matrix composites was investigated by changing the cooling slope.The synthesis of bulk metallic glass composites was made by a process combin...The effect of the cooling slope on the structure of Zr-based metallic glass matrix composites was investigated by changing the cooling slope.The synthesis of bulk metallic glass composites was made by a process combining cooling slope casting and Cu mold casting for Zr66.4Nb6.4Cu10.5Ni8.7Al8 alloys.The results show that the semisolid slurry which consists of the spheroidal or rosette-type BCC crystals and the liquid phase which forms metallic glass phase can be formed by the cooling slope process in this alloy system.However,the semisolid slurry cannot reach to the mold.It is considered that higher viscosity of the liquid phase which forms metallic glass phase causes this result.Thus,parameters of the cooling slope have to be examined further.展开更多
(Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)-based bulk metallic glass composites(BMGCs)with dispersed Ta particles(3vol.%,6vol.%,9vol.%)were successfully fabricated through suction casting.The thermal properties,microstructure,a...(Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)-based bulk metallic glass composites(BMGCs)with dispersed Ta particles(3vol.%,6vol.%,9vol.%)were successfully fabricated through suction casting.The thermal properties,microstructure,and mechanical properties of the BMGCs were systematically investigated.Ta particles are homogeneously dispersed in the amorphous matrix.Ta particle reinforced BMGCs exhibit similar thermal properties and glass-forming ability with the Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)base BMG.Compression test results show that the BMGC with 9vol.%Ta particles has superior mechanical performance with up to 15.7%compressive plastic strain,2,216 MPa yield strength,and 2,260 MPa fracture strength at room temperature.These homogeneously distributed Ta particles act as discrete obstacles in the amorphous matrix,restricting the highly localized shear band.This results in the formation of multiple shear bands around the Ta-rich particles,which lowers the stress concentration,allowing the shear band to propagate further and improve plasticity.展开更多
This article focuses on the tensile and compressive characteristics of a Ti-based bulk metallic glass composite (BMGC). It is found that the yield stress, maximum strength, and fracture strain are 1380 MPa, 1516 MPa...This article focuses on the tensile and compressive characteristics of a Ti-based bulk metallic glass composite (BMGC). It is found that the yield stress, maximum strength, and fracture strain are 1380 MPa, 1516 MPa, and 4.3% for uniaxial tension, but 1580 MPa, 4010 MPa, and 29% for uniaxial compression, respectively. The composite displays a linear "work hardening" capacity under compression; however, the "work softening" behavior is observed in the true engineering stress-strain curve upon tensile loading. The fracture surfaces of specimens also exhibit dissimilar properties under the different loadings.展开更多
Zr-based bulk metallic glass matrix composites (BMGMCs) with a composition of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4- Be10.0 (at%) were fabricated by an innovative process, i.e., semisolid processing plus Bridgman solidifica...Zr-based bulk metallic glass matrix composites (BMGMCs) with a composition of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4- Be10.0 (at%) were fabricated by an innovative process, i.e., semisolid processing plus Bridgman solidification. Different morphologies, distributions, and volume fractions of the crystalline phases can be achieved by tailoring the withdrawal velocity. The largest fi-acture strain of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4Be10.0 (at%) composites with the withdrawal velocity of 1.0 mm/s was found to be 16.7%. The mechanism of plasticity improvement is mainly attributed to the interpenetrated structure of the crystalline phase, which greatly confines the rapid propagation of shear bands.展开更多
A dendritic β-phase reinforced bulk metallic glass(BMG) composite named as D2 was prepared by rapid quenching of a homogenous Zr60Ti14.67Nb5.33Cu5.56Ni4.44Be10 melt, and characterized by means of X-ray diffraction(XR...A dendritic β-phase reinforced bulk metallic glass(BMG) composite named as D2 was prepared by rapid quenching of a homogenous Zr60Ti14.67Nb5.33Cu5.56Ni4.44Be10 melt, and characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM) observation and room-temperature compression test. The microstructure and mechanical properties were compared with those of the spherical β-phase reinforced composite named as composite S2. It was found that the composite D2 contains β-phase dendrites up to 56% in volume-fraction, and exhibits a ductile compressive behavior with plastic strain of 12.7%. As the high-volumefractioned β-phase dendrites transferred to coarse spherical particles of about 20 μm in diameter in the composite S2, a much improved plastic strain up to 20.4% can be achieved. Micrographs of the fractured samples reveal different interaction modes of the propagating shear bands with the dendritic and spherical β phase inclusions, resulting in different shear strains in the composite samples. The matrix of composite S2 undergoes a significantly larger shear strain than that of the composite D2 before ultimate failure, which is thought to be mainly responsible for the greatly increased global plastic strain of the S2 relative to D2.展开更多
This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initi...This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites.展开更多
Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is pre...Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites.展开更多
Bulk metallic glass and their composites (BMGMCs) are a new class of materials which possess superior mechanical properties as compared to existing conventional materials. Owing to this, they are potential candidates ...Bulk metallic glass and their composites (BMGMCs) are a new class of materials which possess superior mechanical properties as compared to existing conventional materials. Owing to this, they are potential candidates for tomorrow’s structural applications. However, they suffer from poor ductility and little or no toughness which render them brittle and they manifest catastrophic failure under applied force. Their behavior is dubious, unpredictable and requires extensive experimentation to arrive at conclusive results. In present study, an effort has been made to design bulk metallic glass matrix composites by the use of modeling and simulation. A probabilistic cellular automaton (CA) model is developed and described in present study by author which is used in conjunction with earlier developed deterministic model to predict microstructural evolution in Zr based BMGMCs in additive manufacturing liquid melt pool. It is elaborately described with an aim to arrive at quantitative relations which describe process and steps of operations. Results indicate that effect of incorporating all mass transfer and diffusion coefficients under transient conditions and precise determination of probability number play a vital role in refining the model and bringing it closer to a level that it could be compared to actual values. It is shown that proposed tailoring can account for microstructural evolution in metallic glasses.展开更多
The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strai...The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 225.4 kJ/mol. To demonstrate the potential workability, the stable zones and the instability zones in the processing map were identified and verified through micrographs. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 500 °C and the strain rate of 0.1-1 s-1.展开更多
To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that alt...To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing).展开更多
Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemente...Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.展开更多
The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12B...The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12Be17 (mole fraction, %) were investigated using XRD, SEM, EBSD, TEM, EDS and three-dimensional reconstruction method. Moreover, visualized at the nanoscale, Be distribution is confirmed to be only present in the matrix using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). Based on these findings, it has been obtained that the accurate chemical compositions are Wi28.3Zr19.7Cu8V6.4Be37.6 (mole fraction, %) for glass matrix and Wi62.nZr18.aCu2.6V16.6 (mole fraction, %) for the dendritic phases, and the volume fractions are 38.5% and 61.5%, respectively. It is believed that the results are of particular importance for the designing of Be-containing MGMCs.展开更多
基金the financial support from the Australian Research Council through the Discovery Project(DP110101653 and DP130103592)Basic and Applied Basic Research Foundation of Guangdong Province,China(2022A1515140123).
文摘Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In recent decades,additive manufacturing(AM)technology has garnered attention as a potential way for fabricating MMCs.This article provides a comprehensive review of recent endeavors and progress in AM of MMCs,encompassing available AM technologies,types of reinforcements,feedstock preparation,synthesis principles during the AM process,typical AM-produced MMCs,strengthening mechanisms,challenges,and future interests.Compared to conventionally manufactured MMCs,AM-produced MMCs exhibit more uniformly distributed reinforcements and refined microstructure,resulting in comparable or even better mechanical properties.In addition,AM technology can produce bulk MMCs with significantly low porosity and fabricate geometrically complex MMC components and MMC lattice structures.As reviewed,many AM-produced MMCs,such as Al matrix composites,Ti matrix composites,nickel matrix composites,Fe matrix composites,etc,have been successfully produced.The types and contents of reinforcements strongly influence the properties of AM-produced MMCs,the choice of AM technology,and the applied processing parameters.In these MMCs,four primary strengthening mechanisms have been identified:Hall–Petch strengthening,dislocation strengthening,load transfer strengthening,and Orowan strengthening.AM technologies offer advantages that enhance the properties of MMCs when compared with traditional fabrication methods.Despite the advantages above,further challenges of AM-produced MMCs are still faced,such as new methods and new technologies for investigating AM-produced MMCs,the intrinsic nature of MMCs coupled with AM technologies,and challenges in the AM processes.Therefore,the article concludes by discussing the challenges and future interests of AM of MMCs.
文摘Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
文摘Particulate reinforced metallic matrix composites have attracted considerable attention due to their lightweight, high strength, high specific modulus, and good wear resistance. A1/B4C composite strips were produced in this work by a modified accumulative roll bonding process where the strips were rotated 90° around the normal direction between successive passes. Transmission electron microscopy and X-ray diffraction analyses reveal the development of nanostructures in the Al matrix after seven passes. It is found that the B4C reinforcement distribution in the matrix is improved by progression of the process. Additionally, the tensile yield strength and elongation of the processed materials are increased with the increase of passes.
基金supports by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20100006120020)the National Nature Science Foundation of China(Nos.51071018and51271018)
文摘(Zr41.2Ti13.sCu12.sNi10Be22.5)100-~Nb~ (at%, x=0 and 8) bulk metallic glasses (BMGs) were coated on the surface of Q195 steel wires by a continuous coating process. The potentiodynamic polarization tests of these BMGs were conducted in 3.5wt% NaC1 aqueous solution. It is found that the addition of 8at% Nb into Zr41.2Ti13.sCu12.sNi10Be22.5 alloy results in the improvement of corrosion resistance with the pitting potential of -52 mV, the open circuit potential of-446 mV, and the corrosion current density of 9.86x 10-6 mA/cm2. This may be attributed to that Nb is beneficial to passivate and stabilize Zr and Ti.
基金supported by Grant-In-Aid for Scientific Research(C)(No.19560689)
文摘The unusual glass-forming ability(GFA) of the Zr48Cu36Ag8Al8 alloy and the high ductility of the Zr48Cu36Ag8Al8 metallic glass-matrix composites containing Ta powder were reported.The bulk metallic glass rod with a diameter of 25 mm was successfully synthesized using copper mold casting for the Zr48Cu36Ag8Al8 alloy.High GFA of this alloy was found to be related to a large supercooled liquid region and a quaternary eutectic point with low melting temperature.The bulk metallic glass matrix composites were prepared by introducing extra Ta particles into the Zr48Cu36Ag8Al8 melt.The composites consist of Ta particles homogenously distributed in the Zr48Cu36Ag8Al8 metallic glass matrix.The optimum content of Ta powder is 10at%for the composite with the highest plasticity,which shows a plastic strain of 31%.
文摘Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.
基金The authors acknowledge the financial support provided by the Knowledge Innovation Program of Chinese Academy of Sciences,No.KJCX2-SW-L05the National Natural Science Foundation of China,No.50101012.
文摘Cu47Ti34Zr11Ni8 bulk metallic glass (BMG) matrix composites containing in situ formed TiC particles and 5-TiCu dendrite phase were developed by copper mold cast. The thermal stability and microstructure of the composites are investigated. Room temperature compression tests reveal that the composite samples exhibit higher fracture strength and distinct plastic strain of 0.2%-0.5%, comparing with that of the corresponding Cu47Ti34Zr11Ni8 monolithic BMG.
文摘The effect of the cooling slope on the structure of Zr-based metallic glass matrix composites was investigated by changing the cooling slope.The synthesis of bulk metallic glass composites was made by a process combining cooling slope casting and Cu mold casting for Zr66.4Nb6.4Cu10.5Ni8.7Al8 alloys.The results show that the semisolid slurry which consists of the spheroidal or rosette-type BCC crystals and the liquid phase which forms metallic glass phase can be formed by the cooling slope process in this alloy system.However,the semisolid slurry cannot reach to the mold.It is considered that higher viscosity of the liquid phase which forms metallic glass phase causes this result.Thus,parameters of the cooling slope have to be examined further.
基金the President Fund of Xi'an Technological University(Grant No.0852-302021407).
文摘(Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)-based bulk metallic glass composites(BMGCs)with dispersed Ta particles(3vol.%,6vol.%,9vol.%)were successfully fabricated through suction casting.The thermal properties,microstructure,and mechanical properties of the BMGCs were systematically investigated.Ta particles are homogeneously dispersed in the amorphous matrix.Ta particle reinforced BMGCs exhibit similar thermal properties and glass-forming ability with the Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)base BMG.Compression test results show that the BMGC with 9vol.%Ta particles has superior mechanical performance with up to 15.7%compressive plastic strain,2,216 MPa yield strength,and 2,260 MPa fracture strength at room temperature.These homogeneously distributed Ta particles act as discrete obstacles in the amorphous matrix,restricting the highly localized shear band.This results in the formation of multiple shear bands around the Ta-rich particles,which lowers the stress concentration,allowing the shear band to propagate further and improve plasticity.
基金supports by the National Natural Science Foundation of China(No.51001008)the Fundamental Research Funds for the Central Universities of China(FRF-MP-10-005B)
文摘This article focuses on the tensile and compressive characteristics of a Ti-based bulk metallic glass composite (BMGC). It is found that the yield stress, maximum strength, and fracture strain are 1380 MPa, 1516 MPa, and 4.3% for uniaxial tension, but 1580 MPa, 4010 MPa, and 29% for uniaxial compression, respectively. The composite displays a linear "work hardening" capacity under compression; however, the "work softening" behavior is observed in the true engineering stress-strain curve upon tensile loading. The fracture surfaces of specimens also exhibit dissimilar properties under the different loadings.
基金financial support of the National Natural Science Foundation of China (Nos. 51101110 and 51105267)the Youth Science Foundation of Shanxi Province, China (Nos. 2012021018-1 and 2012021013-1)the Research Project Supported by Shanxi Scholarship Council of China (Nos. 2012-032 and 2012-030)
文摘Zr-based bulk metallic glass matrix composites (BMGMCs) with a composition of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4- Be10.0 (at%) were fabricated by an innovative process, i.e., semisolid processing plus Bridgman solidification. Different morphologies, distributions, and volume fractions of the crystalline phases can be achieved by tailoring the withdrawal velocity. The largest fi-acture strain of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4Be10.0 (at%) composites with the withdrawal velocity of 1.0 mm/s was found to be 16.7%. The mechanism of plasticity improvement is mainly attributed to the interpenetrated structure of the crystalline phase, which greatly confines the rapid propagation of shear bands.
基金supported by the State Key Lab.of Advanced Metals and Materials,China(Grant No.2012-Z07)
文摘A dendritic β-phase reinforced bulk metallic glass(BMG) composite named as D2 was prepared by rapid quenching of a homogenous Zr60Ti14.67Nb5.33Cu5.56Ni4.44Be10 melt, and characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM) observation and room-temperature compression test. The microstructure and mechanical properties were compared with those of the spherical β-phase reinforced composite named as composite S2. It was found that the composite D2 contains β-phase dendrites up to 56% in volume-fraction, and exhibits a ductile compressive behavior with plastic strain of 12.7%. As the high-volumefractioned β-phase dendrites transferred to coarse spherical particles of about 20 μm in diameter in the composite S2, a much improved plastic strain up to 20.4% can be achieved. Micrographs of the fractured samples reveal different interaction modes of the propagating shear bands with the dendritic and spherical β phase inclusions, resulting in different shear strains in the composite samples. The matrix of composite S2 undergoes a significantly larger shear strain than that of the composite D2 before ultimate failure, which is thought to be mainly responsible for the greatly increased global plastic strain of the S2 relative to D2.
基金supported by the National Research Council of Science & Technology (NST) grant by the Korea Government (MSIT) (grant no.CRC23011-000)by the National Research Foundation of Korea (NRF) funded by the Ministry of Science,ICT,and Future Planning (MSIP,South Korea) (grant no.NRF-2021R1C1C1007645)。
文摘This study presents a novel process for the fabrication of metal-intermetallic composites with a 3D bicontinuous structure, achieved through a combination of liquid metal dealloying(LMD) and subsequent alloying. Initially, porous Ti structures are produced using the LMD process, followed by immersion in a molten Mg-3Al(wt%) metal. Due to the higher thermodynamic miscibility of Al with Ti compared to Mg, the concentration of Al in the Ti matrix increases as the immersion time increases. This results in a sequential phase transition within the Ti matrix: α-Ti → Ti_(3)Al → Ti Al. The phase transition considerably affects the hardness and strength of the composite material,with the Mg-Ti_(3)Al-Ti Al composite exhibiting a maximum hardness nearly twice as high as that of the conventional Mg-Ti composite. This innovative process holds potential for the development of various bicontinuous metal-intermetallic composites.
基金National Natural Science Foundation of China(Grant No.52175162,51805086 and 51975123)Natural Science Foundation of Fujian Province(Grant No.2019J01210)Health education joint project of Fujian Province(Grant No.2019-WJ-01)。
文摘Composite materials exhibit the impressive mechanical properties of high damping and stiffness,which cannot be attained by employing conventional single materials.Along these lines,a novel material architecture is presented in this work in order to fabricate composites with enhanced mechanical characteristics.More specifically,entangled metallic wire materials were used as the active matrix,whereas polyurethane was employed as the reinforcement elements.As a result,an entangled metallic wire material-polyurethane composite with high damping and stiffness was prepared by enforcing the vacuum infiltration method.On top of that,the mechanical properties(loss factor,energy consumption,and average stiffness)of the proposed composite materials were characterized by performing dynamic tests,and its fatigue characteristics were verified by the micro-interface bonding,as well as the macro-damage factor.The impact of the density,preloading spacing,loading amplitude,and exciting frequency on the mechanical properties of the composites were also thoroughly analyzed.The extracted results indicate that the mechanical properties of the composites were significantly enhanced than those of the pure materials due to the introduction of interface friction.Moreover,the average stiffness of the composites was about 10 times the respective value of the entangled metallic wire material.Interestingly,a rise in the loading period leads to some failure between the composite interfaces,which reduces the stiffness property but enhances the damping dissipation properties.Finally,a comprehensive dynamic mechanical model of the composites was established,while it was experimentally verified.The proposed composites possess higher damping features,i.e.,stiffness characteristics,and maintain better fatigue characteristics,which can broaden the application range of the composites.In addition,we provide a theoretical and experimental framework for the research and applications in the field of metal matrix composites.
文摘Bulk metallic glass and their composites (BMGMCs) are a new class of materials which possess superior mechanical properties as compared to existing conventional materials. Owing to this, they are potential candidates for tomorrow’s structural applications. However, they suffer from poor ductility and little or no toughness which render them brittle and they manifest catastrophic failure under applied force. Their behavior is dubious, unpredictable and requires extensive experimentation to arrive at conclusive results. In present study, an effort has been made to design bulk metallic glass matrix composites by the use of modeling and simulation. A probabilistic cellular automaton (CA) model is developed and described in present study by author which is used in conjunction with earlier developed deterministic model to predict microstructural evolution in Zr based BMGMCs in additive manufacturing liquid melt pool. It is elaborately described with an aim to arrive at quantitative relations which describe process and steps of operations. Results indicate that effect of incorporating all mass transfer and diffusion coefficients under transient conditions and precise determination of probability number play a vital role in refining the model and bringing it closer to a level that it could be compared to actual values. It is shown that proposed tailoring can account for microstructural evolution in metallic glasses.
基金Project(51371077)supported by the National Natural Science Foundation of China
文摘The hot deformation behaviors of 35%SiCp/2024 aluminum alloy composites were studied by hot compression tests using Gleeble-1500D thermo-mechanical simulator at temperatures ranging from 350 to 500 °C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 225.4 kJ/mol. To demonstrate the potential workability, the stable zones and the instability zones in the processing map were identified and verified through micrographs. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 500 °C and the strain rate of 0.1-1 s-1.
基金Project(50875199) supported by the National Natural Science Foundation of ChinaProject supported by State Key Laboratory of Advanced Welding and Joining,China
文摘To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing).
文摘Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.
基金Project(11374028)supported by the National Natural Science Foundation of ChinaProject supported by the Cheung Kong Scholars Program of China
文摘The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12Be17 (mole fraction, %) were investigated using XRD, SEM, EBSD, TEM, EDS and three-dimensional reconstruction method. Moreover, visualized at the nanoscale, Be distribution is confirmed to be only present in the matrix using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). Based on these findings, it has been obtained that the accurate chemical compositions are Wi28.3Zr19.7Cu8V6.4Be37.6 (mole fraction, %) for glass matrix and Wi62.nZr18.aCu2.6V16.6 (mole fraction, %) for the dendritic phases, and the volume fractions are 38.5% and 61.5%, respectively. It is believed that the results are of particular importance for the designing of Be-containing MGMCs.