In-situ formed (Cu0.6Zr0.3Ti0.1)95Nb5 bulk metallic glass (BMG) composite with Nb-rich dendrite randomly dispersed in hard glassy matrix was prepared by casting into a water-cooled copper mold. The dendrite has mu...In-situ formed (Cu0.6Zr0.3Ti0.1)95Nb5 bulk metallic glass (BMG) composite with Nb-rich dendrite randomly dispersed in hard glassy matrix was prepared by casting into a water-cooled copper mold. The dendrite has much smaller hardness and elastic modulus than glassy matrix, and the stress concentration at interface provides a channel for the initiating and branching of shear bands upon loading, thus leading to a high compressive fracture strain of 6.08% and fracture strength about 2200 MPa. Comparing with other Cu-based BMG composite, the fracture strength of present (Cu0.6Zr0.3Ti0.1)95Nb5 composite is not significantly reduced, indicating that the addition of Nb in the current work is an effective and effortless way to fabricate new practical BMG composites with enhanced strength and good plasticity.展开更多
Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 a...Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.展开更多
Using melt infiltration casting at different temperatures (965, 990 and 1015 °C) for different time (10 and 15 min), the composites of (Cu50Zr43Al7)99.5Si0.5 bulk metallic glass reinforced with tungsten wir...Using melt infiltration casting at different temperatures (965, 990 and 1015 °C) for different time (10 and 15 min), the composites of (Cu50Zr43Al7)99.5Si0.5 bulk metallic glass reinforced with tungsten wires were produced. X-ray diffraction (XRD), scanning electron microscopy (SEM) and quasi-static compression tests were carried out to evaluate the microstructure and mechanical properties. The results show that the maximum ultimate compressive strength and strain-to-failure of about 1880 MPa and 16.7% were achieved, respectively, at the infiltration temperature of 965 °C for 15 min.展开更多
Mechanical properties of (Cu50Zr43Al7)100 Nbx (x=0,1,3,6,9) bulk metallic glasses rods with a diameter of 2.5 mm prepared by suction casting method were studied. The results of uniaxial compression tests at room t...Mechanical properties of (Cu50Zr43Al7)100 Nbx (x=0,1,3,6,9) bulk metallic glasses rods with a diameter of 2.5 mm prepared by suction casting method were studied. The results of uniaxial compression tests at room temperture show that the best mechanical properties of 2.8% and 1.98 GPa for plastic strain and fracture strength, respectively, in the sample with x=3. Microstructure, fracture surface and shear bands of the samples were observed by SEM and XRD methods.展开更多
The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The s...The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The shear fracture angles of these BMG materials often display obvious differences under compression and tension, and follow either the Mohr-Coulomb criterion or the unified tensile fracture criterion. The compressive plasticity of the composites is always higher than the tensile plasticity, leading to a significant inconsistency. The enhanced plasticity of BMG composites containing ductile dendrites compared to monolithic glasses strongly depends on the details of the microstructure of the composites. A deformation and damage mechanism of pseudo-plasticity, related to local cracking, is proposed to explain the inconsistency of plastic deformation under tension and compression. Besides, significant melting on the shear fracture surfaces was observed. It is suggested that melting is a common phenomenon in these materials with high strength and high elastic energy, as it is typical for BMGs and their composites failing under shear fracture. The melting mechanism can be explained by a combined effect of a significant temperature rise in the shear bands and the instantaneous release of the large amount of elastic energy stored in the material.展开更多
Zr49Cu46Al5 and Zr48.5Cu46.5Al5 bulk metallic glasses(BMGs) with diameter of 5 mm were prepared through water-cooled copper mold casting. The phase structures of the two alloys were identified by X-ray diffractometry(...Zr49Cu46Al5 and Zr48.5Cu46.5Al5 bulk metallic glasses(BMGs) with diameter of 5 mm were prepared through water-cooled copper mold casting. The phase structures of the two alloys were identified by X-ray diffractometry(XRD). The thermal stability was examined by differential scanning calorimetry(DSC). Zr49Cu46Al5 alloy shows a glass transition temperature, Tg, of about 689 K, an crystallization temperature, Tx, of about 736 K. The Zr48.5Cu46.5Al5 alloy shows no obvious exothermic peak. The microstructure of the as-cast alloys was analyzed by transmission electron microscopy(TEM). The aggregations of CuZr and CuZr2 nanocrystals with grain size of about 20 nm are observed in Zr49Cu46Al5 nanocrystalline composite, while the Zr48.5Cu46.5Al5 alloy containing many CuZr martensite plates is crystallized seriously. Mechanical properties of bulk Zr49Cu46Al5 nanocrystalline composite and Zr48.5Cu46.5Al5 alloy measured by compression tests at room temperature show that the work hardening ability of Zr48.5Cu46.5Al5 alloy is larger than that of Zr49Cu46Al5 alloy.展开更多
A kind of novel Ti-based composites was developed by introducing different amounts of carbon element to the Ti50Cu23Ni20Sn7 bulk metallic glass forming alloys. The thermal stability and microstructural evolution of th...A kind of novel Ti-based composites was developed by introducing different amounts of carbon element to the Ti50Cu23Ni20Sn7 bulk metallic glass forming alloys. The thermal stability and microstructural evolution of the composites were investigated. Room temperature compression tests reveal that the composite samples with 1% and 3%(mass fraction) carbon additions have higher fracture strength and obvious plastic strain of 2195MPa, 3.1% and 1913MPa, 1.3% respectively, compared with those of the corresponding carbon-free Ti50Ni20Cu23Sn7 alloys. The deformation mechanisms of the composites with improved mechanical properties were also discussed.展开更多
In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the ...In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little.展开更多
Cu47Ti34Zr11Ni8 bulk metallic glass (BMG) matrix composites containing in situ formed TiC particles and 5-TiCu dendrite phase were developed by copper mold cast. The thermal stability and microstructure of the compo...Cu47Ti34Zr11Ni8 bulk metallic glass (BMG) matrix composites containing in situ formed TiC particles and 5-TiCu dendrite phase were developed by copper mold cast. The thermal stability and microstructure of the composites are investigated. Room temperature compression tests reveal that the composite samples exhibit higher fracture strength and distinct plastic strain of 0.2%-0.5%, comparing with that of the corresponding Cu47Ti34Zr11Ni8 monolithic BMG.展开更多
(Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)-based bulk metallic glass composites(BMGCs)with dispersed Ta particles(3vol.%,6vol.%,9vol.%)were successfully fabricated through suction casting.The thermal properties,microstructure,a...(Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)-based bulk metallic glass composites(BMGCs)with dispersed Ta particles(3vol.%,6vol.%,9vol.%)were successfully fabricated through suction casting.The thermal properties,microstructure,and mechanical properties of the BMGCs were systematically investigated.Ta particles are homogeneously dispersed in the amorphous matrix.Ta particle reinforced BMGCs exhibit similar thermal properties and glass-forming ability with the Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)base BMG.Compression test results show that the BMGC with 9vol.%Ta particles has superior mechanical performance with up to 15.7%compressive plastic strain,2,216 MPa yield strength,and 2,260 MPa fracture strength at room temperature.These homogeneously distributed Ta particles act as discrete obstacles in the amorphous matrix,restricting the highly localized shear band.This results in the formation of multiple shear bands around the Ta-rich particles,which lowers the stress concentration,allowing the shear band to propagate further and improve plasticity.展开更多
Zr-based bulk metallic glass matrix composites (BMGMCs) with a composition of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4- Be10.0 (at%) were fabricated by an innovative process, i.e., semisolid processing plus Bridgman solidifica...Zr-based bulk metallic glass matrix composites (BMGMCs) with a composition of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4- Be10.0 (at%) were fabricated by an innovative process, i.e., semisolid processing plus Bridgman solidification. Different morphologies, distributions, and volume fractions of the crystalline phases can be achieved by tailoring the withdrawal velocity. The largest fi-acture strain of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4Be10.0 (at%) composites with the withdrawal velocity of 1.0 mm/s was found to be 16.7%. The mechanism of plasticity improvement is mainly attributed to the interpenetrated structure of the crystalline phase, which greatly confines the rapid propagation of shear bands.展开更多
An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition w...An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.展开更多
The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter...The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter to 2.0 mm, a heterogeneous microstructure with in-situ formed a-Fe dendrite sparsely distributed in the amorphous matrix can be attained. This heterogeneous mierostructure is conceived to be highly responsible for the enhanced global plasticity in this marginal Fe-based BMG.展开更多
A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic gla...A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic glass composites(Wp/BMGCs).Compared to normal spark plasma sintering(NS),the densification rate and relative density of Wp/BMGCs can be improved by selecting TSS with appropriate sintering pressure in the low temperature pre-sintering stage.However,the compressive strength and plastic strain of 30%Wp/BMGCs prepared by TSS are both higher than those of the samples prepared by NS.The TSS process can significantly enhance the compressive strength of 30%Wp/BMGCs by 12%and remarkably increase the plastic strain by 50%,while the trend is completely opposite for 50%Wp/BMGCs.Quasi-in situ experiments and finite element simulations reveal that uneven temperature distribution among particles during low-temperature pre-sintering causes local overheating at contact points between particles,accelerating formation of sintering neck between particles and plastic deformation of Wp.When the volume fraction of Wp is low,TSS can improve the interface bonding between particles by increasing the number of sintering necks.This makes the fracture mode of Wp/BMGCs being predominantly transgranular fracture.However,as the volume fraction of Wp increases,the adverse effects of Wp plastic deformation are becoming more and more prominent.The aggregated Wp tends to form a solid"cage structure"that hinders the bonding between particles at the interface;correspondingly,the fracture behavior of Wp/BMGCs is mainly dominated by intergranular fracture.Additionally,reducing the sintering pressure during the low-temperature pre-sintering stage of TSS has been shown to effectively decrease plastic deformation in Wp,resulting in a higher degree of densification and better mechanical properties.展开更多
Studies were made of the effect of mechanical pulverization on relaxation,crystallization and brittle-ductile transition of the anneal-embrittled Fe_(75)Si_(10)B_(15) metallic glass rib- bon.Results show that the Curi...Studies were made of the effect of mechanical pulverization on relaxation,crystallization and brittle-ductile transition of the anneal-embrittled Fe_(75)Si_(10)B_(15) metallic glass rib- bon.Results show that the Curie temperature,T_C,decreases and the total enthalpy of relaxation increases gradually with variation of pulverized time.DSC traces reveal an extra exothermic peak,T_X_1,and a distinct glass transition endothermic peak,T_g_1,with increasing pulverized time,T_C,T_X_1,and T_g_1 decrease simultaneously,and the exother- mic peak area corresponding to T_X_1 increases gradually.The surface slip-steps of flaky particles and their corresponding shear are produced by pulverizing the pre-embrittled amorphous glass.The lost ductility of the glass may restore during annealing.展开更多
Zr48.5Cu46.5Al5 bulk metallic glass (BMG) com- posites with diameters of 3 and 4 mm were prepared through suction casting in an arc melting furnace by modulating the alloy composition around the monothetic BMG composi...Zr48.5Cu46.5Al5 bulk metallic glass (BMG) com- posites with diameters of 3 and 4 mm were prepared through suction casting in an arc melting furnace by modulating the alloy composition around the monothetic BMG composition of the high glass forming ability. Microstructural charac- terization reveals that the composites contain micron-sized CuZr phase with martensite structure, as well as nano-sized Zr2Cu crystalline particles and Cu10Zr7 plate-like phase em- bedded in an amorphous matrix. Room temperature com- pression tests showed that the composites exhibited signifi- cant strain hardening and obvious plastic strain of 7.7% for 3 mm and 6.4% for 4 mm diameter samples, respectively.展开更多
Zr-based bulk metallic glass(BMG) composites with in situ formed Y 2 O 3 particle reinforcements were synthesized by proper additions of Y to ultrahigh-oxygen-containing glass-forming alloy precursors.Microstructures,...Zr-based bulk metallic glass(BMG) composites with in situ formed Y 2 O 3 particle reinforcements were synthesized by proper additions of Y to ultrahigh-oxygen-containing glass-forming alloy precursors.Microstructures,thermal stabilities,and mechanical properties of the composites were investigated.Glass formation was greatly enhanced by Y additions in the alloys and the resultant particles were homogenously distributed in the glassy matrix,allowing for the fabrication of oxide dispersion strengthened BMG composites.The compressive strength and hardness increased by 10% and 20%,respectively,with the introduction of Y 2 O 3 particles.These results are significant for the design and production of Zr-based BMGs and BMG composites with improved properties using commercial high-oxygen content raw materials under industrial conditions.展开更多
The aim of this study is to fabricate Zr-based bulk metallic glass matrix composites(BMG-MCs)for biomedical usage and subject them to a comprehensive and farreaching analysis with respect to their mechanical propertie...The aim of this study is to fabricate Zr-based bulk metallic glass matrix composites(BMG-MCs)for biomedical usage and subject them to a comprehensive and farreaching analysis with respect to their mechanical properties,biocorrosion resistance,biocompatibility,and interactions with biofilms that all may arise from their chemical compositions and unusual disordered internal structure.In this study,we fabricate Zr_(40)Ti_(15)Cu_(10)Ni_(10)Be_(25),Zr_(50)Ti_(15)Cu_(10)Ni_(10)Be_(25),and Zr40Ti15Cu10Ni5Si5Be25 alloys and confirm their glassy matrix nature through differential scanning calorimetry(DSC)and scanning electron microscopy(SEM)analyses.The mechanical properties,assessed via nanoindentation,demonstrate the high hardness,strength,and elasticity of the produced materials.Corrosion resistance is investigated in simulated body fluid,with Zr-based BMG-MCs exhibiting superior performance compared to conventional biomedical materials,including 316L stainless steel and Ti6Al4V alloy.Biocompatibility is assessed using human fetal osteoblastic cell line hFOB 1.19,revealing low levels of cytotoxicity.The study also examines the potential for biofilm formation,a critical factor in the success of biomedical implantation,where bacterial infection is a major concern.Our findings suggest,as never reported before,that Zr-based BMG-MCs,with their unique composite glassy structure and excellent physicochemical properties,are promising candidates for various biomedical applications,potentially offering improved performance over traditional metallic biomaterials.展开更多
The glass-forming ability and mechanical properties of metallic glasses and their composites are well known to be sensitive to the preparation conditions and are highly deteriorated by industrial preparing conditions ...The glass-forming ability and mechanical properties of metallic glasses and their composites are well known to be sensitive to the preparation conditions and are highly deteriorated by industrial preparing conditions such as low-purity raw materials and low vacuum.Here,we showed that a series of in-situ bulk metallic glass composites(BMGCs)which exhibit excellent ductility and segmental work hardening were successfully developed utilizing a high vacuum high-pressure die casting(HV-HPDC)technology along with industrial-grade raw materials.The tensile properties of these BMGCs are systematically investigated and correlated with the alloy microstructure.As compared with the copper mold suction casting method,the volume fraction difference of the dendrite phase for the BMGCs with the same composition is not significant when fabricated by the HV-HPDC,whereas the size of theβ-phase is generally larger.Insitu BMGCs with the composition of Ti_(48)Zr_(20)(V_(12/17)Cu_(5/17))19 Be 13 obtained by the HV-HPDC process show ductility up to 11.3%under tension at room temperature and exhibit a certain amount of work hardening.Two conditions need to be met to enable the BMGCs,which are prepared by vacuum die-casting to retain favorable ductility:(1)The volume fraction ofβphase stays below 62%±2%;(2)The equiaxed crystals with a more uniform size in the range of 5-10μm.Meanwhile,the results of the present study provided guidance for developing BMGCs with good ductile properties under industrial conditions.展开更多
Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 bulk metallic glass matrix composites,containingβ-Zr dendrites,were fabricated by Bridgman solidification at the withdrawal velocity of 1.0 mm/s through a temperature gradient of~45...Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 bulk metallic glass matrix composites,containingβ-Zr dendrites,were fabricated by Bridgman solidification at the withdrawal velocity of 1.0 mm/s through a temperature gradient of~45 K/mm.Subjected to the increasing compressive strain rates,the monotonic increasing and decreasing were obtained for the maximum strength and the fracture strain,respectively.The results show that high strain rate may induce the insufficient time for the interaction between shear bands and the crystalline phase,and early fracture occurs as a result.The fractographs are consistent with the mechanical properties,and the failure mode of the present Zr-based composites is in agreement with the frame of the ellipse criterion.展开更多
基金Project(51371149)supported by the National Natural Science Foundation of ChinaProject(151048)supported by the HUO Ying-dong Young Teacher Fund+4 种基金Project(2015ZF53066)supported by the Aeronautical Science Foundation of ChinaProject(92-QZ-2014)supported by the Free Research Fund of State Key Laboratory of Solidification Processing,ChinaProject(2015KJXX-10)supported by Shaanxi Young Stars of Science and Technology,ChinaProejct(2011CB610403)supported by the National Basic Research Program of ChinaProject(51125002)supported by the National Science Funds for Distinguished Young Scientists,China
文摘In-situ formed (Cu0.6Zr0.3Ti0.1)95Nb5 bulk metallic glass (BMG) composite with Nb-rich dendrite randomly dispersed in hard glassy matrix was prepared by casting into a water-cooled copper mold. The dendrite has much smaller hardness and elastic modulus than glassy matrix, and the stress concentration at interface provides a channel for the initiating and branching of shear bands upon loading, thus leading to a high compressive fracture strain of 6.08% and fracture strength about 2200 MPa. Comparing with other Cu-based BMG composite, the fracture strength of present (Cu0.6Zr0.3Ti0.1)95Nb5 composite is not significantly reduced, indicating that the addition of Nb in the current work is an effective and effortless way to fabricate new practical BMG composites with enhanced strength and good plasticity.
文摘Cu47Ti33Zr11Ni6Sn2Si1-based bulk metallic glass matrix composites reinforced with tungsten wires were fabricated by infiltration process at different temperatures (850, 900, 950 and 1000 °C) and time (10, 20 and 30 min) in a quartz or a steel tube. The mechanical tests were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the maximum strength and total strain of the composite are 1778 MPa and 2.8% fabricated in steel tube at 900 °C for 10 min, and 1582 MPa and 3.6% fabricated in quartz tube at 850 °C for 10 min, respectively.
文摘Using melt infiltration casting at different temperatures (965, 990 and 1015 °C) for different time (10 and 15 min), the composites of (Cu50Zr43Al7)99.5Si0.5 bulk metallic glass reinforced with tungsten wires were produced. X-ray diffraction (XRD), scanning electron microscopy (SEM) and quasi-static compression tests were carried out to evaluate the microstructure and mechanical properties. The results show that the maximum ultimate compressive strength and strain-to-failure of about 1880 MPa and 16.7% were achieved, respectively, at the infiltration temperature of 965 °C for 15 min.
文摘Mechanical properties of (Cu50Zr43Al7)100 Nbx (x=0,1,3,6,9) bulk metallic glasses rods with a diameter of 2.5 mm prepared by suction casting method were studied. The results of uniaxial compression tests at room temperture show that the best mechanical properties of 2.8% and 1.98 GPa for plastic strain and fracture strength, respectively, in the sample with x=3. Microstructure, fracture surface and shear bands of the samples were observed by SEM and XRD methods.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Gtrant No.50401019the“Hun-dred of Talent Project"by Chinese Academy of Sciences+1 种基金National Outstanding Young Scientist Foundation for Z.F.Zhang under Grant No.50625103the financial support of the Alexander-von-Humboldt(AvH)Foundation.
文摘The deformation, damage, fracture, plasticity and melting phenomenon induced by shear fracture were investigated and summarized for Zr-, Cu-, Ti- and Mg-based bulk metallic glasses (BMGs) and their composites. The shear fracture angles of these BMG materials often display obvious differences under compression and tension, and follow either the Mohr-Coulomb criterion or the unified tensile fracture criterion. The compressive plasticity of the composites is always higher than the tensile plasticity, leading to a significant inconsistency. The enhanced plasticity of BMG composites containing ductile dendrites compared to monolithic glasses strongly depends on the details of the microstructure of the composites. A deformation and damage mechanism of pseudo-plasticity, related to local cracking, is proposed to explain the inconsistency of plastic deformation under tension and compression. Besides, significant melting on the shear fracture surfaces was observed. It is suggested that melting is a common phenomenon in these materials with high strength and high elastic energy, as it is typical for BMGs and their composites failing under shear fracture. The melting mechanism can be explained by a combined effect of a significant temperature rise in the shear bands and the instantaneous release of the large amount of elastic energy stored in the material.
基金Project(KJCX2-SW-L05) supported by the Knowledge Innovation Program of Chinese Academy of Sciences
文摘Zr49Cu46Al5 and Zr48.5Cu46.5Al5 bulk metallic glasses(BMGs) with diameter of 5 mm were prepared through water-cooled copper mold casting. The phase structures of the two alloys were identified by X-ray diffractometry(XRD). The thermal stability was examined by differential scanning calorimetry(DSC). Zr49Cu46Al5 alloy shows a glass transition temperature, Tg, of about 689 K, an crystallization temperature, Tx, of about 736 K. The Zr48.5Cu46.5Al5 alloy shows no obvious exothermic peak. The microstructure of the as-cast alloys was analyzed by transmission electron microscopy(TEM). The aggregations of CuZr and CuZr2 nanocrystals with grain size of about 20 nm are observed in Zr49Cu46Al5 nanocrystalline composite, while the Zr48.5Cu46.5Al5 alloy containing many CuZr martensite plates is crystallized seriously. Mechanical properties of bulk Zr49Cu46Al5 nanocrystalline composite and Zr48.5Cu46.5Al5 alloy measured by compression tests at room temperature show that the work hardening ability of Zr48.5Cu46.5Al5 alloy is larger than that of Zr49Cu46Al5 alloy.
基金Project( KJCX2-SW-L05) supported by the Knowledge Innovation Program of Chinese Academy of Sciences project(50101012) supported by the National Natural Science Foundation of China
文摘A kind of novel Ti-based composites was developed by introducing different amounts of carbon element to the Ti50Cu23Ni20Sn7 bulk metallic glass forming alloys. The thermal stability and microstructural evolution of the composites were investigated. Room temperature compression tests reveal that the composite samples with 1% and 3%(mass fraction) carbon additions have higher fracture strength and obvious plastic strain of 2195MPa, 3.1% and 1913MPa, 1.3% respectively, compared with those of the corresponding carbon-free Ti50Ni20Cu23Sn7 alloys. The deformation mechanisms of the composites with improved mechanical properties were also discussed.
基金supported by the Science and Technology Development Fund (2015B0201025)the key subject "Computational Solid Mechanics" of China Academy of Engineering Physics+1 种基金the National Outstanding Young Scientists Foundation of China (11225213)the National Natural Science Foundation of China (11521062,11602258)
文摘In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little.
基金The authors acknowledge the financial support provided by the Knowledge Innovation Program of Chinese Academy of Sciences,No.KJCX2-SW-L05the National Natural Science Foundation of China,No.50101012.
文摘Cu47Ti34Zr11Ni8 bulk metallic glass (BMG) matrix composites containing in situ formed TiC particles and 5-TiCu dendrite phase were developed by copper mold cast. The thermal stability and microstructure of the composites are investigated. Room temperature compression tests reveal that the composite samples exhibit higher fracture strength and distinct plastic strain of 0.2%-0.5%, comparing with that of the corresponding Cu47Ti34Zr11Ni8 monolithic BMG.
基金the President Fund of Xi'an Technological University(Grant No.0852-302021407).
文摘(Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)-based bulk metallic glass composites(BMGCs)with dispersed Ta particles(3vol.%,6vol.%,9vol.%)were successfully fabricated through suction casting.The thermal properties,microstructure,and mechanical properties of the BMGCs were systematically investigated.Ta particles are homogeneously dispersed in the amorphous matrix.Ta particle reinforced BMGCs exhibit similar thermal properties and glass-forming ability with the Cu_(43)Zr_(48)Al_(9))_(98)Y_(2)base BMG.Compression test results show that the BMGC with 9vol.%Ta particles has superior mechanical performance with up to 15.7%compressive plastic strain,2,216 MPa yield strength,and 2,260 MPa fracture strength at room temperature.These homogeneously distributed Ta particles act as discrete obstacles in the amorphous matrix,restricting the highly localized shear band.This results in the formation of multiple shear bands around the Ta-rich particles,which lowers the stress concentration,allowing the shear band to propagate further and improve plasticity.
基金financial support of the National Natural Science Foundation of China (Nos. 51101110 and 51105267)the Youth Science Foundation of Shanxi Province, China (Nos. 2012021018-1 and 2012021013-1)the Research Project Supported by Shanxi Scholarship Council of China (Nos. 2012-032 and 2012-030)
文摘Zr-based bulk metallic glass matrix composites (BMGMCs) with a composition of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4- Be10.0 (at%) were fabricated by an innovative process, i.e., semisolid processing plus Bridgman solidification. Different morphologies, distributions, and volume fractions of the crystalline phases can be achieved by tailoring the withdrawal velocity. The largest fi-acture strain of Zr60.0Ti14.7Nb5.3Cu5.6Ni4.4Be10.0 (at%) composites with the withdrawal velocity of 1.0 mm/s was found to be 16.7%. The mechanism of plasticity improvement is mainly attributed to the interpenetrated structure of the crystalline phase, which greatly confines the rapid propagation of shear bands.
基金Project(2012M511401)supported by China Postdoctoral Science FoundationProject(12JJ5018)supported by Hunan Provincial Natural Science Foundation of China+1 种基金Project(2012RS4006)supported by Hunan Provincial Science and Technology Plan of ChinaProject(CSUZC2012028)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘An interesting phenomenon of cooling-rate induced brittleness in Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass (BMG) was reported. It was found that the as-cast BMG specimens exhibited a brittle-ductile transition when the larger specimens were machined into smaller specimens through removing the cast-softening surface layer by layer. After compression tests, the as-machined small specimens, owing to the absence of the cast-softening surface, displayed highly dense and intersecting shear bands, and extensive plastic deformation. This is in contrast to the catastrophic failure and low deformability in the as-cast large specimens. More free volume was detected in the smaller as-fractured specimens, by differential scanning calorimetry, which may be attributed to the occurrence of strain softening and increased plasticity. Compared with the relatively smooth fracture surface in the smaller specimens, the larger specimens showed more diverse features on the fracture surface due to their graded structures.
基金Foundation item: Project (SWU110046) supported by the Startup Foundation for Doctors of Southwest University, ChinaProjects (XDJK2012C017,CDJXS11132228, CDJZR10130012) supported by the Fundamental Research Funds for the Central Universities, China+1 种基金Project (CSTS2006AA4012) supported by the Chongqing Science and Technology Commission, ChinaProject (T201112) supported by Shenzhen Key Laboratory of Special Functional Materials,Shenzhen University,China
文摘The room temperature compressive plasticity of Fe75MosP10Cs.3B1.7 bulk metallic glass (BMG) was improved from 0.5% to 1.8% by increasing the sample diameter from 1.5 mm to 2.0 mm. With increasing the sample diameter to 2.0 mm, a heterogeneous microstructure with in-situ formed a-Fe dendrite sparsely distributed in the amorphous matrix can be attained. This heterogeneous mierostructure is conceived to be highly responsible for the enhanced global plasticity in this marginal Fe-based BMG.
基金financially supported by the National Natural Science Foundation of China(Nos.52371154,52090043,52175371 and 52271147)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012158)+1 种基金the Knowledge Innovation Program of Wuhan-Basic Researchthe Fundamental Research Funds for the Central Universities(No.2021GCRC003)。
文摘A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic glass composites(Wp/BMGCs).Compared to normal spark plasma sintering(NS),the densification rate and relative density of Wp/BMGCs can be improved by selecting TSS with appropriate sintering pressure in the low temperature pre-sintering stage.However,the compressive strength and plastic strain of 30%Wp/BMGCs prepared by TSS are both higher than those of the samples prepared by NS.The TSS process can significantly enhance the compressive strength of 30%Wp/BMGCs by 12%and remarkably increase the plastic strain by 50%,while the trend is completely opposite for 50%Wp/BMGCs.Quasi-in situ experiments and finite element simulations reveal that uneven temperature distribution among particles during low-temperature pre-sintering causes local overheating at contact points between particles,accelerating formation of sintering neck between particles and plastic deformation of Wp.When the volume fraction of Wp is low,TSS can improve the interface bonding between particles by increasing the number of sintering necks.This makes the fracture mode of Wp/BMGCs being predominantly transgranular fracture.However,as the volume fraction of Wp increases,the adverse effects of Wp plastic deformation are becoming more and more prominent.The aggregated Wp tends to form a solid"cage structure"that hinders the bonding between particles at the interface;correspondingly,the fracture behavior of Wp/BMGCs is mainly dominated by intergranular fracture.Additionally,reducing the sintering pressure during the low-temperature pre-sintering stage of TSS has been shown to effectively decrease plastic deformation in Wp,resulting in a higher degree of densification and better mechanical properties.
文摘Studies were made of the effect of mechanical pulverization on relaxation,crystallization and brittle-ductile transition of the anneal-embrittled Fe_(75)Si_(10)B_(15) metallic glass rib- bon.Results show that the Curie temperature,T_C,decreases and the total enthalpy of relaxation increases gradually with variation of pulverized time.DSC traces reveal an extra exothermic peak,T_X_1,and a distinct glass transition endothermic peak,T_g_1,with increasing pulverized time,T_C,T_X_1,and T_g_1 decrease simultaneously,and the exother- mic peak area corresponding to T_X_1 increases gradually.The surface slip-steps of flaky particles and their corresponding shear are produced by pulverizing the pre-embrittled amorphous glass.The lost ductility of the glass may restore during annealing.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Project number:KJCX2-SW-L05)National Natural Science Foundation of China(Grant No.50101012).
文摘Zr48.5Cu46.5Al5 bulk metallic glass (BMG) com- posites with diameters of 3 and 4 mm were prepared through suction casting in an arc melting furnace by modulating the alloy composition around the monothetic BMG composition of the high glass forming ability. Microstructural charac- terization reveals that the composites contain micron-sized CuZr phase with martensite structure, as well as nano-sized Zr2Cu crystalline particles and Cu10Zr7 plate-like phase em- bedded in an amorphous matrix. Room temperature com- pression tests showed that the composites exhibited signifi- cant strain hardening and obvious plastic strain of 7.7% for 3 mm and 6.4% for 4 mm diameter samples, respectively.
基金supported by the National Basic Research Program of China (2007CB613900)the National Natural Science Foundation of China(51071008)the Innovation Foundation of BUAA for PhD Graduate sand Fundamental Research Funds for the Central Universities
文摘Zr-based bulk metallic glass(BMG) composites with in situ formed Y 2 O 3 particle reinforcements were synthesized by proper additions of Y to ultrahigh-oxygen-containing glass-forming alloy precursors.Microstructures,thermal stabilities,and mechanical properties of the composites were investigated.Glass formation was greatly enhanced by Y additions in the alloys and the resultant particles were homogenously distributed in the glassy matrix,allowing for the fabrication of oxide dispersion strengthened BMG composites.The compressive strength and hardness increased by 10% and 20%,respectively,with the introduction of Y 2 O 3 particles.These results are significant for the design and production of Zr-based BMGs and BMG composites with improved properties using commercial high-oxygen content raw materials under industrial conditions.
文摘The aim of this study is to fabricate Zr-based bulk metallic glass matrix composites(BMG-MCs)for biomedical usage and subject them to a comprehensive and farreaching analysis with respect to their mechanical properties,biocorrosion resistance,biocompatibility,and interactions with biofilms that all may arise from their chemical compositions and unusual disordered internal structure.In this study,we fabricate Zr_(40)Ti_(15)Cu_(10)Ni_(10)Be_(25),Zr_(50)Ti_(15)Cu_(10)Ni_(10)Be_(25),and Zr40Ti15Cu10Ni5Si5Be25 alloys and confirm their glassy matrix nature through differential scanning calorimetry(DSC)and scanning electron microscopy(SEM)analyses.The mechanical properties,assessed via nanoindentation,demonstrate the high hardness,strength,and elasticity of the produced materials.Corrosion resistance is investigated in simulated body fluid,with Zr-based BMG-MCs exhibiting superior performance compared to conventional biomedical materials,including 316L stainless steel and Ti6Al4V alloy.Biocompatibility is assessed using human fetal osteoblastic cell line hFOB 1.19,revealing low levels of cytotoxicity.The study also examines the potential for biofilm formation,a critical factor in the success of biomedical implantation,where bacterial infection is a major concern.Our findings suggest,as never reported before,that Zr-based BMG-MCs,with their unique composite glassy structure and excellent physicochemical properties,are promising candidates for various biomedical applications,potentially offering improved performance over traditional metallic biomaterials.
基金supported by the National Key Research and Development Plan(Grant Nos.2018YFA0703603,2021YFA0716302)Guangdong Major Project of Basic and Applied Basic Research,China(Grant Nos.2019B030302010,2020B1515120092)+2 种基金Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2020B1515120092,2019B030302010)the National Natural Science Foundation of China(Grant Nos.52192602,52192603,51971092,11790291,and 61888102)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB30000000).
文摘The glass-forming ability and mechanical properties of metallic glasses and their composites are well known to be sensitive to the preparation conditions and are highly deteriorated by industrial preparing conditions such as low-purity raw materials and low vacuum.Here,we showed that a series of in-situ bulk metallic glass composites(BMGCs)which exhibit excellent ductility and segmental work hardening were successfully developed utilizing a high vacuum high-pressure die casting(HV-HPDC)technology along with industrial-grade raw materials.The tensile properties of these BMGCs are systematically investigated and correlated with the alloy microstructure.As compared with the copper mold suction casting method,the volume fraction difference of the dendrite phase for the BMGCs with the same composition is not significant when fabricated by the HV-HPDC,whereas the size of theβ-phase is generally larger.Insitu BMGCs with the composition of Ti_(48)Zr_(20)(V_(12/17)Cu_(5/17))19 Be 13 obtained by the HV-HPDC process show ductility up to 11.3%under tension at room temperature and exhibit a certain amount of work hardening.Two conditions need to be met to enable the BMGCs,which are prepared by vacuum die-casting to retain favorable ductility:(1)The volume fraction ofβphase stays below 62%±2%;(2)The equiaxed crystals with a more uniform size in the range of 5-10μm.Meanwhile,the results of the present study provided guidance for developing BMGCs with good ductile properties under industrial conditions.
基金supported by the New Century Excellent Talents in Universities(No.NCET-05-0105)the National Basic Research Priorities Program of China(No.2007CB613903)
文摘Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 bulk metallic glass matrix composites,containingβ-Zr dendrites,were fabricated by Bridgman solidification at the withdrawal velocity of 1.0 mm/s through a temperature gradient of~45 K/mm.Subjected to the increasing compressive strain rates,the monotonic increasing and decreasing were obtained for the maximum strength and the fracture strain,respectively.The results show that high strain rate may induce the insufficient time for the interaction between shear bands and the crystalline phase,and early fracture occurs as a result.The fractographs are consistent with the mechanical properties,and the failure mode of the present Zr-based composites is in agreement with the frame of the ellipse criterion.