In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was ev...In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.展开更多
Sulfur dioxide(SO_(2))emissions from diesel exhaust pose a serious threat to the environment and human health.Thus,desulfurization technology and the performance of desulfurization materials must be improved.In this s...Sulfur dioxide(SO_(2))emissions from diesel exhaust pose a serious threat to the environment and human health.Thus,desulfurization technology and the performance of desulfurization materials must be improved.In this study,MnO_(2) was modified with various alkali metal ions using the impregnation method to enhance its SO_(2) capture performance.The composites were characterized intensively by scanning electron microscopy,energydispersive X-ray spectroscopy,X-ray diffraction spectroscopy,and Brunauer-Emmett-Teller theory.The SO_(2) capture performance of these composites were measured via thermogravimetry,and the effect of doping with alkali metal ions on the SO_(2) capture performance of MnO_(2) was investigated.Results showed that the SO_(2) capture performance of MnO_(2) could be enhanced by doping with alkali metal ions,and the MnO_(2) composite doped with LiOH(2.0 mol/L)had the best SO_(2) capture capacity(124 mgSO_(2)/gMaterial),which was 18%higher than that of pure MnO_(2).Moreover,the type and concentration of alkali metal ions had varying effects on the SO_(2) capture performance of MnO_(2).In our experiment,the SO_(2) capture performance of the MnO_(2) doped with NaOH,LiCl,Na2CO3,K2CO3,and Li2CO3 composites were worse than that of pure MnO_(2).Therefore,the influences of the type and concentration of alkali metal ions to be doped into desulfurization materials must be considered comprehensively.展开更多
A double layered, one-pot hydrothermal method was adopted in this work to prepare transition metal ions (Fe3+, Ni2+, Cu2+ and Co2+) doped TiO〉 The morphology and chemical properties of TiO2 and the status of me...A double layered, one-pot hydrothermal method was adopted in this work to prepare transition metal ions (Fe3+, Ni2+, Cu2+ and Co2+) doped TiO〉 The morphology and chemical properties of TiO2 and the status of metal ions were characterized with XRD, TEM, BET, UV-Vis and XPS analysis. TEM images show that the obtained TiO2 was very uniform with an average particle size of 10.4 nm. XPS, TEM and XRD results show that transitional metals were doped onto TiO2 in the form of ions. Photocatalytic decomposition of oxalic acid under UV illumination and methylene blue degradation under visible light on these materials were conducted, respectively. The results reveal that Cu2+-TiO2 and C02+-TiO2 showed a highest activity under UV and visible light illumination, respectively, and they were both more active than commercial P25 TiO2. With this special design of double layers, the hydrolysis of titanium precursor in the system with water can be easily controlled and metal ions are simply doped. This strategy can be further applied to synthesize metal ion doped TiO2 using various metal precursors with controllable amounts, and thus lead to better optimization of highly active photocatalyst.展开更多
In recent years, the nanostructure for solar cells have attracted considerable attention from scientists as a result of a promising candidate for low cost devices. In this work, quantum dots sensitized solar cells wit...In recent years, the nanostructure for solar cells have attracted considerable attention from scientists as a result of a promising candidate for low cost devices. In this work, quantum dots sensitized solar cells with effective performance based on a co-sensitized Cd S∕Cd Se:Mn2+(or Cu2+) nanocrystal, which was made by successive ionic layer absorption and reaction, are discussed. The optical, physical, chemical, and photovoltaic properties of quantum dots sensitized solar cells were sensitized to Mn2+and Cu2+dopants. Therefore, the short current(JSC)of the quantum dot sensitized solar cells is boosted dramatically from 12.351 mA∕cm2 for pure Cd Se nanoparticles to 18.990 mA∕cm2 for Mn2+ions and 19.915 mA∕cm2 for Cu2+ions. Actually, metal dopant extended the band gap of pure Cd Se nanoparticles, reduced recombination, enhanced the efficiency of devices, and improved the charge transfer and collection. In addition, Mn2+and Cu2+dopants rose to the level of the conduction band of pure Cd Se nanoparticles, which leads to the reduction of the charge recombination, enhances the lightharvesting efficiency, and improves the charge diffusion and collection. The results also were confirmed by the obtained experimental data of photoluminescence decay and electrochemical impedance spectroscopy.展开更多
基金Project supported by Beijing Excellent Talents Training Fund (20061D0502200299)
文摘In this study, nanosized TiO2 co-doped with Fe3+ and Nd3+ ions was synthesized via a sol-gel method. The metallic ion doped TiO2 was thoroughly characterized with XRD and UV-vis, and the photocatalytic activity was evaluated by degrading methylene blue (MB) solution. The results indicated that TiO2 crystalline size was reduced and phase transformation of anatase to rutile was suppressed as the content of doped Nd3+ ion increased in the co-doped TiO2. The UV-vis spectra of co-doped TiO2 seemed to simply overlay two spectra of single metal doped TiO2, and had significantly increased absorbance in the ranges of 400~500 nm, 565~600 nm and 730~765 nm as compared to pure TiO2. The photocatalytic activity of co-doped TiO2 was obviously enhanced, and raised about 30% compared to that of pure TiO2 as doped Nd3+ content was 0.15% and Fe3+ content was 0.05%, respectively. The enhanced catalytic activity was attributed to a synergistic effect of two doped ions, where doped Fe3+ ion inhibited the recombination of photogenerated electron and hole, and Nd3+ ion brought more surface carboxyl to promote the degradation reaction.
基金This work was financially supported by the Key Program of Frontier Science of Chinese Academy of Sciences(QYZDY-SSW-JSC038)the Natural Science Foundation of Guangdong Province(2017A030310185)the Science and Technology Planning Project of Guangzhou,China(201704030040).
文摘Sulfur dioxide(SO_(2))emissions from diesel exhaust pose a serious threat to the environment and human health.Thus,desulfurization technology and the performance of desulfurization materials must be improved.In this study,MnO_(2) was modified with various alkali metal ions using the impregnation method to enhance its SO_(2) capture performance.The composites were characterized intensively by scanning electron microscopy,energydispersive X-ray spectroscopy,X-ray diffraction spectroscopy,and Brunauer-Emmett-Teller theory.The SO_(2) capture performance of these composites were measured via thermogravimetry,and the effect of doping with alkali metal ions on the SO_(2) capture performance of MnO_(2) was investigated.Results showed that the SO_(2) capture performance of MnO_(2) could be enhanced by doping with alkali metal ions,and the MnO_(2) composite doped with LiOH(2.0 mol/L)had the best SO_(2) capture capacity(124 mgSO_(2)/gMaterial),which was 18%higher than that of pure MnO_(2).Moreover,the type and concentration of alkali metal ions had varying effects on the SO_(2) capture performance of MnO_(2).In our experiment,the SO_(2) capture performance of the MnO_(2) doped with NaOH,LiCl,Na2CO3,K2CO3,and Li2CO3 composites were worse than that of pure MnO_(2).Therefore,the influences of the type and concentration of alkali metal ions to be doped into desulfurization materials must be considered comprehensively.
基金support from the National Natural Science Foundation of China(21207133)the National Key Technology R&D Program(2011BAC06B09)
文摘A double layered, one-pot hydrothermal method was adopted in this work to prepare transition metal ions (Fe3+, Ni2+, Cu2+ and Co2+) doped TiO〉 The morphology and chemical properties of TiO2 and the status of metal ions were characterized with XRD, TEM, BET, UV-Vis and XPS analysis. TEM images show that the obtained TiO2 was very uniform with an average particle size of 10.4 nm. XPS, TEM and XRD results show that transitional metals were doped onto TiO2 in the form of ions. Photocatalytic decomposition of oxalic acid under UV illumination and methylene blue degradation under visible light on these materials were conducted, respectively. The results reveal that Cu2+-TiO2 and C02+-TiO2 showed a highest activity under UV and visible light illumination, respectively, and they were both more active than commercial P25 TiO2. With this special design of double layers, the hydrolysis of titanium precursor in the system with water can be easily controlled and metal ions are simply doped. This strategy can be further applied to synthesize metal ion doped TiO2 using various metal precursors with controllable amounts, and thus lead to better optimization of highly active photocatalyst.
文摘In recent years, the nanostructure for solar cells have attracted considerable attention from scientists as a result of a promising candidate for low cost devices. In this work, quantum dots sensitized solar cells with effective performance based on a co-sensitized Cd S∕Cd Se:Mn2+(or Cu2+) nanocrystal, which was made by successive ionic layer absorption and reaction, are discussed. The optical, physical, chemical, and photovoltaic properties of quantum dots sensitized solar cells were sensitized to Mn2+and Cu2+dopants. Therefore, the short current(JSC)of the quantum dot sensitized solar cells is boosted dramatically from 12.351 mA∕cm2 for pure Cd Se nanoparticles to 18.990 mA∕cm2 for Mn2+ions and 19.915 mA∕cm2 for Cu2+ions. Actually, metal dopant extended the band gap of pure Cd Se nanoparticles, reduced recombination, enhanced the efficiency of devices, and improved the charge transfer and collection. In addition, Mn2+and Cu2+dopants rose to the level of the conduction band of pure Cd Se nanoparticles, which leads to the reduction of the charge recombination, enhances the lightharvesting efficiency, and improves the charge diffusion and collection. The results also were confirmed by the obtained experimental data of photoluminescence decay and electrochemical impedance spectroscopy.