To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally re- duced in various reduction times at various reduction temperatures. The microstructure...To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally re- duced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the re- duced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumula- tive frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol^-1, and 922.05, respec- tively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.展开更多
The growing characteristics of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate under different conditions were investigated.The size of the metallic iron particles was quantita...The growing characteristics of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate under different conditions were investigated.The size of the metallic iron particles was quantitatively measured via optical image analysis with consideration of size calibration and weighted ratio of image numbers in the core,middle and periphery zones of cross-section of pellets.In order to guarantee the measurement accuracy,54 images were captured in total for each specimen,with a weighted ratio of 1:7:19 with respect to the core,middle and periphery section of the cross-section of pellets.Increasing reduction temperature and time is favorable to the growth of metallic iron particles.Based on the modification of particle size measurement,in terms of time(t)and temperature(T)a predicting model of metallic iron particle size(D),was established as:D=125−0.112t−0.2352T−5.355×10^−4t^2+2.032×10^−4t∙T+1.134×10^−4T^2.展开更多
The effects of corrosion temperature, oxygen flow rate and corrosion time on the transformation of metallic iron were systematically studied, and the effects of mineral phases of Fe-bearing products on Ti-Fe separatio...The effects of corrosion temperature, oxygen flow rate and corrosion time on the transformation of metallic iron were systematically studied, and the effects of mineral phases of Fe-bearing products on Ti-Fe separation were investigated. The reaction mechanism of metallic iron in corrosion process was proposed. The results showed that corrosion temperature played a key role in determining the transformation of metallic iron in reduced ilmenite during corrosion process. Under suitable corrosion conditions, Fe-bearing mineral in reduced ilmenite could be converted to amorphous ferric hydroxide, lepidocrocite,hematite and magnetite, respectively, and lepidocrocite was the most easily separated Fe-bearing mineral from corrosion products owing to the significant density difference between lepidocrocite and Ti-rich materials. The Ti-rich material with 77.81 wt.% TiO2 and Fe-bearing product with 52.69 wt.% total Fe were obtained by gravity separation. The Ti recovery ratio and Fe recovery ratio were 91.16% and 86.27%, respectively.展开更多
The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2C...The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2CO3, particularly at the early stage of roasting, compared to the rate without additives. In the absence of additives, iron oxides were quickly reduced to metallic iron, and fayalite was difficult to form. When CaO and Na2CO3 were added, the low reducible iron-containing silicate compounds formed and melted, subsequently retarding the metallization process. The inhibition of Na2CO3 was more noticeable than that of CaO, and higher Na2CO3 doses resulted in stronger inhibition of the increased metallization rate. However, when Na2CO3 was added prior to CaO, the liquid phase formed, which facilitated the growth of the metallic phase. To reinforce the separation of the metallic phase and slag, an appropriate amount of liquid phase generated during the reduction is necessary. It was shown that when 10% CaO and 10% Na2CO3 were added, a high metallization rate and larger metallic iron particles were obtained, thus further decreasing the required Na2CO3 dosage.展开更多
Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing comm...Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simul- taneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed.展开更多
In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses o...In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.展开更多
Objective To investigate the potential involvement of DMT1(IRE) protein in the brain vascular system in vivo during Pb exposure. Methods Three groups of male Sprague-Dawley rats were exposed to Pb in drinking water,...Objective To investigate the potential involvement of DMT1(IRE) protein in the brain vascular system in vivo during Pb exposure. Methods Three groups of male Sprague-Dawley rats were exposed to Pb in drinking water, among which two groups were concurrently administered by oral gavage once every other day as the low and high Fe treatment group, respectively, for 6 weeks. At the same time, the group only supplied with high Fe was also set as a reference. The animals were decapitated, then brain capillary-rich fraction was isolate from cerebral cortex. Western blot method was used to identify protein expression, and RT-PCR to detect the change of the m RNA. Results Pb exposure significantly increased Pb concentrations in cerebral cortex. Low Fe dose significantly reduced the cortex Pb levels, However, high Fe dose increased the cortex Pb levels. Interestingly, changes of DMT1(IRE) protein in brain capillary-rich fraction were highly related to the Pb level, but those of DMT1(IRE) m RNA were not significantly different. Moreover, the consistent changes in the levels of p-ERK1/2 or IRP1 with the changes in the levels of DMT1(IRE). Conclusion These results suggest that Pb is transported into the brain through DMT1(IRE), and the ERK MAPK pathway is involved in DMT1(IRE)-mediated transport regulation in brain vascular system in vivo.展开更多
Glutamic acid and gamma-aminobutyric acid (GABA) influence iron content in the substantia nigra and globus pallidus, although the mechanisms of action remain unclear. The present study measured iron content and chan...Glutamic acid and gamma-aminobutyric acid (GABA) influence iron content in the substantia nigra and globus pallidus, although the mechanisms of action remain unclear. The present study measured iron content and changes in divalent metal transporter 1 (DMT1) and hephaestin expression in the substantia nigra and caudate putamen, and explored the effects of GABA and glutamic acid on iron metabolism. Results demonstrated that iron content and DMT1 non iron response element [DMT1 (-IRE)] expression were significantly greater but hephaestin expression was significantly lower in the caudate putamen of the monosodium glutamate group compared with the control group. No significant difference in iron content was detected between the GABA and control groups. DMT1 (-IRE) expression was significantly reduced, but hephaestin expressiori was significantly increased in the GABA group compared with the control group. In addition, there was no significant difference in tyrosine hydroxylase expression between monosodium glutamate and GABA groups and the control group. These results suggested that glutamate affected iron metabolism in the caudate putamen by increasing DMTI(-IRE) and decreasing hephaestin expression. In addition, GABA decreased DMT1 (-IRE) expression in the caudate putamen.展开更多
Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reducti...Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reduction product, the order of the metallization rate of reduction product being CaCO3 > no additive > CaSO4 > CaCl2, which indicated that the addition of CaCO3 was more conducive to promoting the reduction of iron than other calcium compounds. Gas analysis showed that there were mainly two processes in the carbothermic reduction of VTC, a solid–solid and a solid–gas reaction. The concentrations of CO and CO2 were highest when CaCO3 was added, while that in a roasting system decreased the most when CaCl2 was added. X-ray diffraction(XRD) analysis showed that calcium compounds could change the reduction process of ilmenite in VTC. The phase compositions of the reduction products were changed from metallic iron(Fe) and anosovite(FeTi2O5) to metallic iron(Fe) and perovekite(CaTiO3) when calcium compounds were added. Additionally, CaSO4 and CaCl2 could significantly promote the growth of metallic iron particles, though the existence of Fe-bearing Mg2TiO4 in reduction products was not conducive to the reduction of iron. The formation of FeS would further hinder the reduction of iron after adding CaSO4.展开更多
The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate(VTC)by adding CaCO3 was investigated.Thermodynamic analysis was employed to show the feasibility of calcium titan...The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate(VTC)by adding CaCO3 was investigated.Thermodynamic analysis was employed to show the feasibility of calcium titanate formation by the reaction of ilmenite and Ca CO3 in a reductive atmosphere,where ilmenite is more easily reduced by CO or carbon in the presence of CaCO3.The effects of CaCO3 dosage and reduction temperature on the phase transformation and metallization degree were also investigated in an actual roasting test.Appropriate increase of CaCO3 dosages and reduction temperatures were found to be conducive to the formation of calcium titanate,and the optimum conditions were a CaCO3 dosage of 18 wt%and a reduction temperature of 1400°C.Additionally,scanning electron microscopy–energy dispersive spectrometry(SEM–EDS)analysis shows that calcium titanate produced via the carbothermic reduction of VTC by CaCO3 addition was of higher purity with particle size approximately 50μm.Hence,the separation of calcium titanate and metallic iron will be the focus in the future study.展开更多
Effect of Cu. ni. Mn and,mo on the austemperability, Inicroslruclures and Inechanlcal properlies of auslempered duclile iron(ADI) weld metal have been investigated it has been demonslrated foal Mn and.Mo obviously enh...Effect of Cu. ni. Mn and,mo on the austemperability, Inicroslruclures and Inechanlcal properlies of auslempered duclile iron(ADI) weld metal have been investigated it has been demonslrated foal Mn and.Mo obviously enhance the austemperablity of weld metal. but a exdcess of Mn or Mo impairs the mechanical properties of ADI weld metal because of the formation or carbide at cell boundaries. Cu and Ni can improve the plasticity of ADI weld metal by suppressing the formation of carbide and by increaxsing the amount of austemite,.in order to obtain the weld having both the high austemperability and exceptional combination of mechanical properties. it is advantageous that welds is alloyed withe tWo Or more elements in relalivelv.small amounts.展开更多
Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor comp...Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.展开更多
Biochar(BC)-supported graphene-encapsulated zero-valent iron nanoparticle composites(BC-G@Fe0)are promising engineering nanocomposites that can be used to scavenge heavy metal from wastewater.However,the produc-tion o...Biochar(BC)-supported graphene-encapsulated zero-valent iron nanoparticle composites(BC-G@Fe0)are promising engineering nanocomposites that can be used to scavenge heavy metal from wastewater.However,the produc-tion of BC-G@Fe0 through carbothermal reduction using biomass as a carbon source remains challenging because of biomass pyrolysis complications.Here,we examined two carbothermal reduction routes for preparing BC-G@Fe0 using bamboo as the carbon source.The first route impregnated Fe ions(Fe^(2+)/^(3+))into unpyrolyzed bamboo parti-cles initially,followed by carbonization at 600-1000℃.This process produced BC-G@Fe0 dominated by iron carbide(Fe_(3)C),which led to low heavy metal removal efficiency(i.e.,Cu^(2+)capacity of<0.3 mmol g^(−1)).In the second route,bamboo particles were pyrolyzed(600℃)to biochar first,followed by impregnating this biochar with Fe ions,and then carbonized at 600-1000℃.This route produces zero-valent iron nanoparticles,which resulted in high heavy metal removal capacities(i.e.,0.30,1.58,and 1.91 mmol g^(−1)for Pb^(2+),Cu^(2+),and Ag+,respectively).The effects of car-bonization temperature(600-1000℃),iron source(i.e.,iron nitrates,iron sulfate,ferrous chloride,and ferric chloride),and iron loading(5-40%)on the morphology,structure,and heavy metal ion aqueous uptake performance of BC-G@Fe0 were also investigated.This study revealed the formation mechanisms of BC-G@Fe0 through biomass carbother-mal reduction,which could guide the application-oriented design of multifunctional iron-BC composites for water remediation.展开更多
The comprehensive utilization of abundant high-boron iron concentrate is of particular significance to Chi- na, and the high-boron iron concentrate has not yet been utilized as a source for boron at an industrial scal...The comprehensive utilization of abundant high-boron iron concentrate is of particular significance to Chi- na, and the high-boron iron concentrate has not yet been utilized as a source for boron at an industrial scale due to its complex mineralogy and fine mineral dissemination. An innovative method was proposed for recovery of boron and iron from high-boron iron concentrate by reduction roasting and magnetic sepa- ration. The effects of reduction temperature and roasting time were investigated and their optimum condi- tions were determined. The mineralogical changes during roasting were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the pyrrhotite (FeS) contained in the high-boron iron concentrate and the new-formed FeS-Fe solid solution softened or melted at high temperatures owing to their low melting points, and then decreased the metallic iron ratio and accelerated the growth of metallic iron particles. Meanwhile, the magnetite and szaibelyite were converted into metal- lic iron and suanite, respectively. Consequently, boron was readily enriched into the non-magnetic product and the metallic iron was aggregated to the magnetic concentrate by magnetic separation. Boron recovery of 88.6% with corresponding B2O3 content of 14.5% and iron recovery of 95.1% with an iron grade of 92.7% were achieved when high-boron iron concentrate was reduced at 1 125℃ for 150 min. Besides, the boron reactivity of the boron-rich non-magnetic product was up to 80.8%.展开更多
Developing earth-abundant electrocatalysts for hydrogen evolution reaction(HER)is important for the sustainable energy economy.Herein,efficient and stable heterocatalysts consisting of crystalline-amorphous M@MN_(x)(M...Developing earth-abundant electrocatalysts for hydrogen evolution reaction(HER)is important for the sustainable energy economy.Herein,efficient and stable heterocatalysts consisting of crystalline-amorphous M@MN_(x)(M=Co,Fe,Ni)encapsulated in N-doped carbon layers supported with N-doped graphene sheets(denoted as M@MN_(x)@NC-NG)are synthesized by facile hydrothermal reaction and nitridation process.During the nitriding process,metal ions in M(tzbc)_2(H_(2)O)_4(tzbc=4-(1H-1,2,4-triazol-1-yl)benzoic acid)complexes are reduced to crystalline M cores,accompanied by the formation of amorphous MN_(x)shells;the tzbc ligands are insitu carbonized to form outermost N-doped carbon(NC)layers that connect with inner MN_(x)via M-N-C motifs inherited from the complex precursors and inhibit the transition of MN_(x)from amorphous to crystalline phase.The Co@CoN_(x)@NC-NG catalyst exhibits excellent HER activity with small overpotentials of 45 and 64 mV at a cathode current density of 10 mA·cm^(-2)and low Tafel slopes of 40 and 85 mV·dec^(-1)in 0.5 mol·L^(-1)H_(2)SO_4 and1.0 mol·L^(-1)KOH electrolytes,respectively.The Co@CoN_(x)@NC-NG retains 97%of the initial overpotential after 100,000 s in both acidic and alkaline media.Such outstanding HER performance originates from the crystalline-amorphous Co@CoN_(x)that redistributes electrons around the heterointerfaces,facilitating the conversion process of H^(+)/H_(2)O to hydrogen and thereby promoting HER kinetics.The outermost NC layers serve as the armor of Co@CoN_(x),and graphene nanosheets act as carriers of egg-like Co@CoN_(x)@NC and conduction paths for electron shuttles,ensuring stable and continuous electrocatalytic hydrogen production.展开更多
The kinetics of Cr(VI)reduction to Cr(III)by metallic iron(Fe0)was studied in batch reactors for a range of reactant concentrations,pH and temperatures.Nearly 86.8%removal efficiency for Cr(VI)was achieved when Fe0 co...The kinetics of Cr(VI)reduction to Cr(III)by metallic iron(Fe0)was studied in batch reactors for a range of reactant concentrations,pH and temperatures.Nearly 86.8%removal efficiency for Cr(VI)was achieved when Fe0 concentration was 6 g/L(using commercial iron powder(<200 mesh)in 120 min).The reduction of hexavalent chro-mium took place on the surface of the iron particles following pseudo-first order kinetics.The rate of Cr(VI)reduction increased with increasing Fe0 addition and temperature but inversely with initial pH.The pseudo-first-order rate coeffi-cients(kobs)were determined as 0.0024,0.010,0.0268 and 0.0628 min−1 when iron powder dosages were 2,6,10 and 14 g/L at 25°C and pH 5.5,respectively.According to the Arrehenius equation,the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3330 min−1 were obtained at the temperature range of 288−308 K.Different Fe0 types were compared in this study.The reactivity was in the order starch-stabilized Fe0 nanoparticles>Fe0 nano-particles>Fe0 powder>Fe0 filings.Electrochemical analysis of the reaction process showed that Cr(III)and Fe(III)hydroxides should be the dominant final products.展开更多
Environmental pollution has become one of the greatest problems in the world, and the concerns about environmental pollutants released by human activities from agriculture and industrial production have been continuou...Environmental pollution has become one of the greatest problems in the world, and the concerns about environmental pollutants released by human activities from agriculture and industrial production have been continuously increasing. Although intense efforts have been made to understand the health effects of environmental pollutants, most studies have only focused on direct toxic effects and failed to simultaneously evaluate the long-term adaptive, compensatory and secondary impacts on health. Burgeoning evidence suggests that environmental pollutants may directly or indirectly give rise to disordered element homeostasis, such as for iron. It is crucially important to maintain concerted cellular and systemic iron metabolism. Otherwise, disordered iron metabolism would lead to cytotoxicity and increased risk for various diseases, including cancers. Thus, study on the effects of environmental pollutants upon iron homeostasis is urgently needed. In this review, we recapitulate the available findings on the direct or indirect impacts of environmental pollutants, including persistent organic pollutants(POPs), heavy metals and pesticides, on iron homeostasis and associated adverse health problems. In view of the unanswered questions, more efforts are warranted to investigate the disruptive effects of environmental pollutants on iron homeostasis and consequent toxicities.展开更多
Among the numerous health conditions environmental pollutants can cause, chronic exposure to pollutants including persistent organic pollutants(POPs) and heavy metals has been shown to disturb a specific biological ...Among the numerous health conditions environmental pollutants can cause, chronic exposure to pollutants including persistent organic pollutants(POPs) and heavy metals has been shown to disturb a specific biological homeostatic process, the iron metabolism in human body. Disorders of iron metabolism are among the common diseases of humans and encompass a broad spectrum of diseases with different clinical manifestations, ranging from anemia to iron overload, and possibly to neurodegenerative diseases and cancer.Hepcidin–ferroportin(FPN) signaling is one of the key mechanisms responsible for iron supply, utilization, recycling, and storage, and recent studies demonstrated that exposure to environmental pollutants including POPs and heavy metals could lead to disruption of the hepcidin–FPN axis along with disordered systemic iron homeostasis and diseases. This article introduces and highlights the accompanying review article by Drs. Xu and Liu in this journal, which elaborates in detail the adverse effects of environmental pollutants on iron metabolism, and the mechanisms responsible for these toxicological outcomes. It also points out the knowledge gaps still existing in this subject matter. Research that will fill these gaps will improve our understanding of the issue and provide useful information to prevent or treat diseases induced by environmental pollutants.展开更多
A wetland with attractive plants hosting birds and other wildlife is an esthetically pleasing prospect that is gaining popularity as a way of stabilizing or remediating metalcontaminated soils and sediment(Weber and ...A wetland with attractive plants hosting birds and other wildlife is an esthetically pleasing prospect that is gaining popularity as a way of stabilizing or remediating metalcontaminated soils and sediment(Weber and Gagnon,2014;展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51134002 and 51604063)the Fundamental Research Funds for the Central Universities(No.N140108001)
文摘To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally re- duced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the re- duced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumula- tive frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol^-1, and 922.05, respec- tively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.
基金Project(51804346)supported by the National Natural Science Foundation of ChinaProject(2019JJ50767)supported by the Natural Science Foundation of Hunan Province,ChinaProject(KY[2017]125)supported by Youth Foundation of Guizhou Education Department,China。
文摘The growing characteristics of metallic iron particles during reductive roasting of boron-bearing magnetite concentrate under different conditions were investigated.The size of the metallic iron particles was quantitatively measured via optical image analysis with consideration of size calibration and weighted ratio of image numbers in the core,middle and periphery zones of cross-section of pellets.In order to guarantee the measurement accuracy,54 images were captured in total for each specimen,with a weighted ratio of 1:7:19 with respect to the core,middle and periphery section of the cross-section of pellets.Increasing reduction temperature and time is favorable to the growth of metallic iron particles.Based on the modification of particle size measurement,in terms of time(t)and temperature(T)a predicting model of metallic iron particle size(D),was established as:D=125−0.112t−0.2352T−5.355×10^−4t^2+2.032×10^−4t∙T+1.134×10^−4T^2.
基金the Natural Science Foundation of Hunan Province,China(Grant No.2019JJ50816)the National Natural Science Foundation of China(Grant No.50504018)supporting this research,and they acknowledge the support of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization.
文摘The effects of corrosion temperature, oxygen flow rate and corrosion time on the transformation of metallic iron were systematically studied, and the effects of mineral phases of Fe-bearing products on Ti-Fe separation were investigated. The reaction mechanism of metallic iron in corrosion process was proposed. The results showed that corrosion temperature played a key role in determining the transformation of metallic iron in reduced ilmenite during corrosion process. Under suitable corrosion conditions, Fe-bearing mineral in reduced ilmenite could be converted to amorphous ferric hydroxide, lepidocrocite,hematite and magnetite, respectively, and lepidocrocite was the most easily separated Fe-bearing mineral from corrosion products owing to the significant density difference between lepidocrocite and Ti-rich materials. The Ti-rich material with 77.81 wt.% TiO2 and Fe-bearing product with 52.69 wt.% total Fe were obtained by gravity separation. The Ti recovery ratio and Fe recovery ratio were 91.16% and 86.27%, respectively.
基金Funded by the National High-tech Research and Development Program of China(No.2012AA062401)
文摘The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2CO3, particularly at the early stage of roasting, compared to the rate without additives. In the absence of additives, iron oxides were quickly reduced to metallic iron, and fayalite was difficult to form. When CaO and Na2CO3 were added, the low reducible iron-containing silicate compounds formed and melted, subsequently retarding the metallization process. The inhibition of Na2CO3 was more noticeable than that of CaO, and higher Na2CO3 doses resulted in stronger inhibition of the increased metallization rate. However, when Na2CO3 was added prior to CaO, the liquid phase formed, which facilitated the growth of the metallic phase. To reinforce the separation of the metallic phase and slag, an appropriate amount of liquid phase generated during the reduction is necessary. It was shown that when 10% CaO and 10% Na2CO3 were added, a high metallization rate and larger metallic iron particles were obtained, thus further decreasing the required Na2CO3 dosage.
基金Project (No. 20407015) supported by the National Natural Sci-ence Foundation of China
文摘Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simul- taneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed.
基金financially supported by the National Natural Science Foundation of China (No. 51575132)
文摘In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid–solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation(LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.
基金supported by National Natural Science Foundation of China(No.81472478)Medical Science Youth Breeding Project of PLA(13QNP161)
文摘Objective To investigate the potential involvement of DMT1(IRE) protein in the brain vascular system in vivo during Pb exposure. Methods Three groups of male Sprague-Dawley rats were exposed to Pb in drinking water, among which two groups were concurrently administered by oral gavage once every other day as the low and high Fe treatment group, respectively, for 6 weeks. At the same time, the group only supplied with high Fe was also set as a reference. The animals were decapitated, then brain capillary-rich fraction was isolate from cerebral cortex. Western blot method was used to identify protein expression, and RT-PCR to detect the change of the m RNA. Results Pb exposure significantly increased Pb concentrations in cerebral cortex. Low Fe dose significantly reduced the cortex Pb levels, However, high Fe dose increased the cortex Pb levels. Interestingly, changes of DMT1(IRE) protein in brain capillary-rich fraction were highly related to the Pb level, but those of DMT1(IRE) m RNA were not significantly different. Moreover, the consistent changes in the levels of p-ERK1/2 or IRP1 with the changes in the levels of DMT1(IRE). Conclusion These results suggest that Pb is transported into the brain through DMT1(IRE), and the ERK MAPK pathway is involved in DMT1(IRE)-mediated transport regulation in brain vascular system in vivo.
基金the National Natural Science Foundation of China, No. 30570957the Natural Science Foundation of Hebei Province, No. C2006000152, C2007000251
文摘Glutamic acid and gamma-aminobutyric acid (GABA) influence iron content in the substantia nigra and globus pallidus, although the mechanisms of action remain unclear. The present study measured iron content and changes in divalent metal transporter 1 (DMT1) and hephaestin expression in the substantia nigra and caudate putamen, and explored the effects of GABA and glutamic acid on iron metabolism. Results demonstrated that iron content and DMT1 non iron response element [DMT1 (-IRE)] expression were significantly greater but hephaestin expression was significantly lower in the caudate putamen of the monosodium glutamate group compared with the control group. No significant difference in iron content was detected between the GABA and control groups. DMT1 (-IRE) expression was significantly reduced, but hephaestin expressiori was significantly increased in the GABA group compared with the control group. In addition, there was no significant difference in tyrosine hydroxylase expression between monosodium glutamate and GABA groups and the control group. These results suggested that glutamate affected iron metabolism in the caudate putamen by increasing DMTI(-IRE) and decreasing hephaestin expression. In addition, GABA decreased DMT1 (-IRE) expression in the caudate putamen.
基金financially supported by the National Natural Science Foundation of China(No.51674018)
文摘Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reduction product, the order of the metallization rate of reduction product being CaCO3 > no additive > CaSO4 > CaCl2, which indicated that the addition of CaCO3 was more conducive to promoting the reduction of iron than other calcium compounds. Gas analysis showed that there were mainly two processes in the carbothermic reduction of VTC, a solid–solid and a solid–gas reaction. The concentrations of CO and CO2 were highest when CaCO3 was added, while that in a roasting system decreased the most when CaCl2 was added. X-ray diffraction(XRD) analysis showed that calcium compounds could change the reduction process of ilmenite in VTC. The phase compositions of the reduction products were changed from metallic iron(Fe) and anosovite(FeTi2O5) to metallic iron(Fe) and perovekite(CaTiO3) when calcium compounds were added. Additionally, CaSO4 and CaCl2 could significantly promote the growth of metallic iron particles, though the existence of Fe-bearing Mg2TiO4 in reduction products was not conducive to the reduction of iron. The formation of FeS would further hinder the reduction of iron after adding CaSO4.
基金the National Natural Science Foundation of China(No.51674018)。
文摘The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate(VTC)by adding CaCO3 was investigated.Thermodynamic analysis was employed to show the feasibility of calcium titanate formation by the reaction of ilmenite and Ca CO3 in a reductive atmosphere,where ilmenite is more easily reduced by CO or carbon in the presence of CaCO3.The effects of CaCO3 dosage and reduction temperature on the phase transformation and metallization degree were also investigated in an actual roasting test.Appropriate increase of CaCO3 dosages and reduction temperatures were found to be conducive to the formation of calcium titanate,and the optimum conditions were a CaCO3 dosage of 18 wt%and a reduction temperature of 1400°C.Additionally,scanning electron microscopy–energy dispersive spectrometry(SEM–EDS)analysis shows that calcium titanate produced via the carbothermic reduction of VTC by CaCO3 addition was of higher purity with particle size approximately 50μm.Hence,the separation of calcium titanate and metallic iron will be the focus in the future study.
文摘Effect of Cu. ni. Mn and,mo on the austemperability, Inicroslruclures and Inechanlcal properlies of auslempered duclile iron(ADI) weld metal have been investigated it has been demonslrated foal Mn and.Mo obviously enhance the austemperablity of weld metal. but a exdcess of Mn or Mo impairs the mechanical properties of ADI weld metal because of the formation or carbide at cell boundaries. Cu and Ni can improve the plasticity of ADI weld metal by suppressing the formation of carbide and by increaxsing the amount of austemite,.in order to obtain the weld having both the high austemperability and exceptional combination of mechanical properties. it is advantageous that welds is alloyed withe tWo Or more elements in relalivelv.small amounts.
文摘Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.
基金the USDA National Institute of Food and Agriculture(NIFA)(Grant No.2020-65210-30763).
文摘Biochar(BC)-supported graphene-encapsulated zero-valent iron nanoparticle composites(BC-G@Fe0)are promising engineering nanocomposites that can be used to scavenge heavy metal from wastewater.However,the produc-tion of BC-G@Fe0 through carbothermal reduction using biomass as a carbon source remains challenging because of biomass pyrolysis complications.Here,we examined two carbothermal reduction routes for preparing BC-G@Fe0 using bamboo as the carbon source.The first route impregnated Fe ions(Fe^(2+)/^(3+))into unpyrolyzed bamboo parti-cles initially,followed by carbonization at 600-1000℃.This process produced BC-G@Fe0 dominated by iron carbide(Fe_(3)C),which led to low heavy metal removal efficiency(i.e.,Cu^(2+)capacity of<0.3 mmol g^(−1)).In the second route,bamboo particles were pyrolyzed(600℃)to biochar first,followed by impregnating this biochar with Fe ions,and then carbonized at 600-1000℃.This route produces zero-valent iron nanoparticles,which resulted in high heavy metal removal capacities(i.e.,0.30,1.58,and 1.91 mmol g^(−1)for Pb^(2+),Cu^(2+),and Ag+,respectively).The effects of car-bonization temperature(600-1000℃),iron source(i.e.,iron nitrates,iron sulfate,ferrous chloride,and ferric chloride),and iron loading(5-40%)on the morphology,structure,and heavy metal ion aqueous uptake performance of BC-G@Fe0 were also investigated.This study revealed the formation mechanisms of BC-G@Fe0 through biomass carbother-mal reduction,which could guide the application-oriented design of multifunctional iron-BC composites for water remediation.
基金the financial support from the National Natural Science Foundation of China (51134002)the Fundamental Research Funds for the Central Universities of China (N140108001 and N150106003)
文摘The comprehensive utilization of abundant high-boron iron concentrate is of particular significance to Chi- na, and the high-boron iron concentrate has not yet been utilized as a source for boron at an industrial scale due to its complex mineralogy and fine mineral dissemination. An innovative method was proposed for recovery of boron and iron from high-boron iron concentrate by reduction roasting and magnetic sepa- ration. The effects of reduction temperature and roasting time were investigated and their optimum condi- tions were determined. The mineralogical changes during roasting were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the pyrrhotite (FeS) contained in the high-boron iron concentrate and the new-formed FeS-Fe solid solution softened or melted at high temperatures owing to their low melting points, and then decreased the metallic iron ratio and accelerated the growth of metallic iron particles. Meanwhile, the magnetite and szaibelyite were converted into metal- lic iron and suanite, respectively. Consequently, boron was readily enriched into the non-magnetic product and the metallic iron was aggregated to the magnetic concentrate by magnetic separation. Boron recovery of 88.6% with corresponding B2O3 content of 14.5% and iron recovery of 95.1% with an iron grade of 92.7% were achieved when high-boron iron concentrate was reduced at 1 125℃ for 150 min. Besides, the boron reactivity of the boron-rich non-magnetic product was up to 80.8%.
基金financially supported by the National Natural Science Foundation of China(No.91961201)the China Postdoctoral Science Foundation(No.2022M722344)Shanxi"1331"Project。
文摘Developing earth-abundant electrocatalysts for hydrogen evolution reaction(HER)is important for the sustainable energy economy.Herein,efficient and stable heterocatalysts consisting of crystalline-amorphous M@MN_(x)(M=Co,Fe,Ni)encapsulated in N-doped carbon layers supported with N-doped graphene sheets(denoted as M@MN_(x)@NC-NG)are synthesized by facile hydrothermal reaction and nitridation process.During the nitriding process,metal ions in M(tzbc)_2(H_(2)O)_4(tzbc=4-(1H-1,2,4-triazol-1-yl)benzoic acid)complexes are reduced to crystalline M cores,accompanied by the formation of amorphous MN_(x)shells;the tzbc ligands are insitu carbonized to form outermost N-doped carbon(NC)layers that connect with inner MN_(x)via M-N-C motifs inherited from the complex precursors and inhibit the transition of MN_(x)from amorphous to crystalline phase.The Co@CoN_(x)@NC-NG catalyst exhibits excellent HER activity with small overpotentials of 45 and 64 mV at a cathode current density of 10 mA·cm^(-2)and low Tafel slopes of 40 and 85 mV·dec^(-1)in 0.5 mol·L^(-1)H_(2)SO_4 and1.0 mol·L^(-1)KOH electrolytes,respectively.The Co@CoN_(x)@NC-NG retains 97%of the initial overpotential after 100,000 s in both acidic and alkaline media.Such outstanding HER performance originates from the crystalline-amorphous Co@CoN_(x)that redistributes electrons around the heterointerfaces,facilitating the conversion process of H^(+)/H_(2)O to hydrogen and thereby promoting HER kinetics.The outermost NC layers serve as the armor of Co@CoN_(x),and graphene nanosheets act as carriers of egg-like Co@CoN_(x)@NC and conduction paths for electron shuttles,ensuring stable and continuous electrocatalytic hydrogen production.
基金This work was supported by the National Natural Science Foundation of China(Grant No.20407015)the Program for New Century Excellent Talents in University(Grant No.NCET-06-0525).
文摘The kinetics of Cr(VI)reduction to Cr(III)by metallic iron(Fe0)was studied in batch reactors for a range of reactant concentrations,pH and temperatures.Nearly 86.8%removal efficiency for Cr(VI)was achieved when Fe0 concentration was 6 g/L(using commercial iron powder(<200 mesh)in 120 min).The reduction of hexavalent chro-mium took place on the surface of the iron particles following pseudo-first order kinetics.The rate of Cr(VI)reduction increased with increasing Fe0 addition and temperature but inversely with initial pH.The pseudo-first-order rate coeffi-cients(kobs)were determined as 0.0024,0.010,0.0268 and 0.0628 min−1 when iron powder dosages were 2,6,10 and 14 g/L at 25°C and pH 5.5,respectively.According to the Arrehenius equation,the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3330 min−1 were obtained at the temperature range of 288−308 K.Different Fe0 types were compared in this study.The reactivity was in the order starch-stabilized Fe0 nanoparticles>Fe0 nano-particles>Fe0 powder>Fe0 filings.Electrochemical analysis of the reaction process showed that Cr(III)and Fe(III)hydroxides should be the dominant final products.
基金supported by a grant under the national " 973 " program (No: 2014CB932000)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB14000000)the National Natural Science Foundation of China (Nos: 21425731, 21377159, 21177151, and 21321004)
文摘Environmental pollution has become one of the greatest problems in the world, and the concerns about environmental pollutants released by human activities from agriculture and industrial production have been continuously increasing. Although intense efforts have been made to understand the health effects of environmental pollutants, most studies have only focused on direct toxic effects and failed to simultaneously evaluate the long-term adaptive, compensatory and secondary impacts on health. Burgeoning evidence suggests that environmental pollutants may directly or indirectly give rise to disordered element homeostasis, such as for iron. It is crucially important to maintain concerted cellular and systemic iron metabolism. Otherwise, disordered iron metabolism would lead to cytotoxicity and increased risk for various diseases, including cancers. Thus, study on the effects of environmental pollutants upon iron homeostasis is urgently needed. In this review, we recapitulate the available findings on the direct or indirect impacts of environmental pollutants, including persistent organic pollutants(POPs), heavy metals and pesticides, on iron homeostasis and associated adverse health problems. In view of the unanswered questions, more efforts are warranted to investigate the disruptive effects of environmental pollutants on iron homeostasis and consequent toxicities.
文摘Among the numerous health conditions environmental pollutants can cause, chronic exposure to pollutants including persistent organic pollutants(POPs) and heavy metals has been shown to disturb a specific biological homeostatic process, the iron metabolism in human body. Disorders of iron metabolism are among the common diseases of humans and encompass a broad spectrum of diseases with different clinical manifestations, ranging from anemia to iron overload, and possibly to neurodegenerative diseases and cancer.Hepcidin–ferroportin(FPN) signaling is one of the key mechanisms responsible for iron supply, utilization, recycling, and storage, and recent studies demonstrated that exposure to environmental pollutants including POPs and heavy metals could lead to disruption of the hepcidin–FPN axis along with disordered systemic iron homeostasis and diseases. This article introduces and highlights the accompanying review article by Drs. Xu and Liu in this journal, which elaborates in detail the adverse effects of environmental pollutants on iron metabolism, and the mechanisms responsible for these toxicological outcomes. It also points out the knowledge gaps still existing in this subject matter. Research that will fill these gaps will improve our understanding of the issue and provide useful information to prevent or treat diseases induced by environmental pollutants.
文摘A wetland with attractive plants hosting birds and other wildlife is an esthetically pleasing prospect that is gaining popularity as a way of stabilizing or remediating metalcontaminated soils and sediment(Weber and Gagnon,2014;