Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy densi...Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy density was varied from 0.21 to 0.81 J / cm2 to optimize bending strength. For ZrO2 ceramic, it was found that the strength increases from 530 to 753 MPa at 0.51 J / cm2 irradiation. For Al2O3 and (Ce-TZP)+ Al2O3 the fracture strength also increases in varying degree. The causes of strength increment were discussed.展开更多
文摘Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy density was varied from 0.21 to 0.81 J / cm2 to optimize bending strength. For ZrO2 ceramic, it was found that the strength increases from 530 to 753 MPa at 0.51 J / cm2 irradiation. For Al2O3 and (Ce-TZP)+ Al2O3 the fracture strength also increases in varying degree. The causes of strength increment were discussed.