In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analyticall...In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analytically and numerically. The theoretical analysis reveals that the energy is mainly dissipated through the radial bending of the metal circular tube, the circumferential expansion of the metal circular tube, and the metal filled-foam compression. The principle of energy conservation is used to derive the theoretical formula for the minimum compressive force of the MFFCT over free inversion under axial loading. Furthermore, the free inversion deformation characteristics of the MFFCT are analyzed numerically. The theoretical steady values are found to be in good agreement with the results of the finite element(FE) analysis. The effects of the average diameter of the metal tube, the wall thickness of the metal tube, and the filled-foam strength on the free inversion deformation of the MFFCT are considered. It is observed that in the steady deformation stage, the load-carrying and energy-absorbing capacities of the MFFCT increase with the increase in the average diameter of the metal tube, the wall thickness of the metal tube, or the filled-foam strength. The specific energy absorption(SEA) of free inversion of the MFFCT is significantly higher than that of the metal tube alone.展开更多
We present here our investigations of the features of focused electron beam transport in free space at elevated pressures of a few pascals.We have explored the effect of the beam accelerating voltage,operating gas pre...We present here our investigations of the features of focused electron beam transport in free space at elevated pressures of a few pascals.We have explored the effect of the beam accelerating voltage,operating gas pressure,and magnetic focusing upon the trajectory of beam electrons in the crossover region,in particular on the beam convergence and divergence angles.It is shown that for the forevacuum pressure range of 2-5 Pa explored,a distinctive feature of the propagation of a focused electron beam with a current of up to 20 mA at an accelerating voltage of 10-20 kV is the difference in the angles of convergence(before the focus)and divergence(after the focus).Whereas at a low pressure of 2 Pa the divergence angle is smaller than the convergence angle,as the pressure increases the divergence angle increases and for pressures greater than 5 Pa the divergence angle is greater than the convergence angle.The results obtained were used in experiments on electron beam transport through a long narrow metal tube with a diameter of 5.8-9.2 mm and length of 10-30 cm.We show that for a 30 cm long tube of 7.5 mm diameter,the focused beam transmission can exceed 70%.展开更多
Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximati...Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximation with modifications,simple analytical solutions are obtained for the dynamic response of rectangular foam-filled FML tubes.The numerical calculations for low-velocity impact of rectangular foam-filled FML tubes are conducted.The accuracy of analytical solutions and numerical results is verified by each other.Finally,the effects of the metal volume fraction of FMLs,the number of the metal layers in FMLs,and the foam strength on the dynamic response of foam-filled tubes are discussed through the analytical model in details.It is shown that the force increases with the increase in the metal volume fraction in FMLs,the number of the metal layers in FML,and the foam strength for the given deflection.展开更多
High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and eco...High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.展开更多
In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on...In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.展开更多
Carbon nanotube sorting,i.e.,the separation of a mixture of tubes into different electronic types and further into species with a specifi c chirality,is a fascinating problem of both scientifi c and technological impo...Carbon nanotube sorting,i.e.,the separation of a mixture of tubes into different electronic types and further into species with a specifi c chirality,is a fascinating problem of both scientifi c and technological importance.It is one of those problems that are easy to describe but diffi cult to solve.Single-stranded DNA forms stable complexes with carbon nanotubes and disperses them effectively in water.A particular DNA sequence of alternating guanine(G)and thymine(T)nucleotides((GT)n,with n=10 to 45)self-assembles into an ordered supramolecular structure around an individual nanotube,in such a way that the electrostatic properties of the DNA-carbon nanotube hybrid depend on tube structure,enabling nanotube separation by anion-exchange chromatography.This review provides a summary of the separation of metallic and semiconducting tubes,and purification of single(n,m)tubes using the DNA-wrapping approach.We will present our current understanding of the DNA-carbon nanotube hybrid structure and separation mechanisms,and predict future developments of the DNA-based approach.展开更多
The classical problem of a round metal tube collapsing in concertina mode when subjected to axial compressive loading has been reexamined both theoretically and experimentally. The model including an eccentricity fa...The classical problem of a round metal tube collapsing in concertina mode when subjected to axial compressive loading has been reexamined both theoretically and experimentally. The model including an eccentricity factor proposed by Wierzbicki et al. and modified by Singace et al. has been taken one step further to obtain the real load-displacement history and to investigate eccentricity effects. The influence of the eccentricity parameter m on the mean crushing load was discussed according to the present analysis. Experiments were carried out to verify the eccentricity effects. The results show that experimental and theo- retical load-displacement curves match perfectly, especially in terms of half wavelength. Unlike previous re- searchs, the results suggest that m is not a fixed value and may affect energy absorption.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 12272290 and11872291)the State Key Laboratory of Automotive Safety and Energy of China (No. KFY2202)。
文摘In this paper, a novel efficient energy absorber with free inversion of a metal foam-filled circular tube(MFFCT) is designed, and the axial compressive behavior of the MFFCT under free inversion is studied analytically and numerically. The theoretical analysis reveals that the energy is mainly dissipated through the radial bending of the metal circular tube, the circumferential expansion of the metal circular tube, and the metal filled-foam compression. The principle of energy conservation is used to derive the theoretical formula for the minimum compressive force of the MFFCT over free inversion under axial loading. Furthermore, the free inversion deformation characteristics of the MFFCT are analyzed numerically. The theoretical steady values are found to be in good agreement with the results of the finite element(FE) analysis. The effects of the average diameter of the metal tube, the wall thickness of the metal tube, and the filled-foam strength on the free inversion deformation of the MFFCT are considered. It is observed that in the steady deformation stage, the load-carrying and energy-absorbing capacities of the MFFCT increase with the increase in the average diameter of the metal tube, the wall thickness of the metal tube, or the filled-foam strength. The specific energy absorption(SEA) of free inversion of the MFFCT is significantly higher than that of the metal tube alone.
文摘We present here our investigations of the features of focused electron beam transport in free space at elevated pressures of a few pascals.We have explored the effect of the beam accelerating voltage,operating gas pressure,and magnetic focusing upon the trajectory of beam electrons in the crossover region,in particular on the beam convergence and divergence angles.It is shown that for the forevacuum pressure range of 2-5 Pa explored,a distinctive feature of the propagation of a focused electron beam with a current of up to 20 mA at an accelerating voltage of 10-20 kV is the difference in the angles of convergence(before the focus)and divergence(after the focus).Whereas at a low pressure of 2 Pa the divergence angle is smaller than the convergence angle,as the pressure increases the divergence angle increases and for pressures greater than 5 Pa the divergence angle is greater than the convergence angle.The results obtained were used in experiments on electron beam transport through a long narrow metal tube with a diameter of 5.8-9.2 mm and length of 10-30 cm.We show that for a 30 cm long tube of 7.5 mm diameter,the focused beam transmission can exceed 70%.
基金the National Natural Science Foundation of China(Nos.11872291 and11972281)the Jiangsu Key Laboratory of Engineering Mechanics,Southeast University+2 种基金the Fundamental Research Funds for the Central Universities(No.LEM21B01)the Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(No.cj202002)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JM-034)。
文摘Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximation with modifications,simple analytical solutions are obtained for the dynamic response of rectangular foam-filled FML tubes.The numerical calculations for low-velocity impact of rectangular foam-filled FML tubes are conducted.The accuracy of analytical solutions and numerical results is verified by each other.Finally,the effects of the metal volume fraction of FMLs,the number of the metal layers in FMLs,and the foam strength on the dynamic response of foam-filled tubes are discussed through the analytical model in details.It is shown that the force increases with the increase in the metal volume fraction in FMLs,the number of the metal layers in FML,and the foam strength for the given deflection.
文摘High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.
基金Project(51222406)supported by the National Natural Science Foundation of ChinaProject(NCET-12-1061)supported by the Funds for New Century Excellent Talents in University of China+1 种基金Project(12TD007)supported by the Scientific Research Innovation Team Program of Sichuan Colleges and Universities,ChinaProject(2014TD0025)supported by the Youth Scientific Research Innovation Team Program of Sichuan Province,China
文摘In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.
基金Work conducted in our lab is supported by DuPont and US National Science Foundation.
文摘Carbon nanotube sorting,i.e.,the separation of a mixture of tubes into different electronic types and further into species with a specifi c chirality,is a fascinating problem of both scientifi c and technological importance.It is one of those problems that are easy to describe but diffi cult to solve.Single-stranded DNA forms stable complexes with carbon nanotubes and disperses them effectively in water.A particular DNA sequence of alternating guanine(G)and thymine(T)nucleotides((GT)n,with n=10 to 45)self-assembles into an ordered supramolecular structure around an individual nanotube,in such a way that the electrostatic properties of the DNA-carbon nanotube hybrid depend on tube structure,enabling nanotube separation by anion-exchange chromatography.This review provides a summary of the separation of metallic and semiconducting tubes,and purification of single(n,m)tubes using the DNA-wrapping approach.We will present our current understanding of the DNA-carbon nanotube hybrid structure and separation mechanisms,and predict future developments of the DNA-based approach.
基金Supportedby the National Postdoctoral Science Foundation (No.2002-17) and the National Natural Science Foundation of China(No. 50275077)
文摘The classical problem of a round metal tube collapsing in concertina mode when subjected to axial compressive loading has been reexamined both theoretically and experimentally. The model including an eccentricity factor proposed by Wierzbicki et al. and modified by Singace et al. has been taken one step further to obtain the real load-displacement history and to investigate eccentricity effects. The influence of the eccentricity parameter m on the mean crushing load was discussed according to the present analysis. Experiments were carried out to verify the eccentricity effects. The results show that experimental and theo- retical load-displacement curves match perfectly, especially in terms of half wavelength. Unlike previous re- searchs, the results suggest that m is not a fixed value and may affect energy absorption.