As an effort to minimize material utilization, seismic steel dampers designed to deform inelastically in an in-plane flexural mode have attracted serious attention recently. This paper presents a new type of metallic ...As an effort to minimize material utilization, seismic steel dampers designed to deform inelastically in an in-plane flexural mode have attracted serious attention recently. This paper presents a new type of metallic yielding damper referred to as the in-plane arch-shaped damper modified from its portal frame-shaped counterpart by replacing the straight beam with a circular arch to minimize the effects of stress concentration and warping, and therefore to avoid premature failure. Component tests of both the portal frame-shaped and arch-shaped in-plane dampers were conducted for comparison. Hysteresis loops obtained from the component tests under cyclic loads indicate substantial improvement on the energydissipative characteristics of the proposed damper. Moreover, seismic performance assessment of the proposed damper was carried out further via shaking table tests of a five-story model frame. Encouraging results have been achieved in terms of acceleration reduction, damping enhancement and peak suppression of the frequency response functions, suggesting the potential of the proposed device to be used in earthquake-resisting systems.展开更多
基金TSC under contract MOST 103-2625-M-009-014the Science&Technology of Fujian Province,China under Project No.2017J01495
文摘As an effort to minimize material utilization, seismic steel dampers designed to deform inelastically in an in-plane flexural mode have attracted serious attention recently. This paper presents a new type of metallic yielding damper referred to as the in-plane arch-shaped damper modified from its portal frame-shaped counterpart by replacing the straight beam with a circular arch to minimize the effects of stress concentration and warping, and therefore to avoid premature failure. Component tests of both the portal frame-shaped and arch-shaped in-plane dampers were conducted for comparison. Hysteresis loops obtained from the component tests under cyclic loads indicate substantial improvement on the energydissipative characteristics of the proposed damper. Moreover, seismic performance assessment of the proposed damper was carried out further via shaking table tests of a five-story model frame. Encouraging results have been achieved in terms of acceleration reduction, damping enhancement and peak suppression of the frequency response functions, suggesting the potential of the proposed device to be used in earthquake-resisting systems.