Seven new binuclear titanocenes with different linking bridges, unsubstituted or substituted on the Cp rings, were synthesized and tested for their effect on ethylene polymerization in the presence of MAO. The polyeth...Seven new binuclear titanocenes with different linking bridges, unsubstituted or substituted on the Cp rings, were synthesized and tested for their effect on ethylene polymerization in the presence of MAO. The polyethylenes thus obtained had broad MWD or even bimodal GPC curves, as compared with that from two reference mononuclear titanocenes. This is explained by the difference in degree of steric hindrance around the active center sites imposed by the bulky substituted ligands assuming different configurations in the rotation of the catalyst molecules. Lower polymerization temperatures alleviate the effect of these configuration differences, as reflected in change in MW and (M) over bar(w)/(M) over bar(n). This effect is not caused by decomposition or disproportionation of the binuclear titanocenes as evidenced by the stability of the catalyst.展开更多
The possibility of mesoporous acid solid as a carder for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM-41 and AIMCM-41, and mes...The possibility of mesoporous acid solid as a carder for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM-41 and AIMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPOI mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.展开更多
The kinetics of nonisothermal and isothermal crystallization of metallocene catalyzed and conventional polyethylenes has been studied by differential scanning calorimetry. Using Avrami equation, Ozawa theory and Mo Zh...The kinetics of nonisothermal and isothermal crystallization of metallocene catalyzed and conventional polyethylenes has been studied by differential scanning calorimetry. Using Avrami equation, Ozawa theory and Mo Zhishen method, the experimental data have been analyzed. It is shown that metallocene polyethylene possesses a higher rate of crystallization due to a higher stereoregularity of its molecular chains. Moreover, they have different nonisothermal crystallization mechanisms and identical isothermal crystallization mechanisms.展开更多
Mesoporous silica (MS), 3-aminopropyltriethoxysilane (APTES) modified mesoporous silica (AMS), bis(3- trimethoxysilylpropyl)amine modified mesoporous silica (BAMS) and APTES modified solid spherical silica ...Mesoporous silica (MS), 3-aminopropyltriethoxysilane (APTES) modified mesoporous silica (AMS), bis(3- trimethoxysilylpropyl)amine modified mesoporous silica (BAMS) and APTES modified solid spherical silica (AS) were prepared and used to immobilize metallocene catalysts for ethylene polymerization. Gel permeation chromatography results showed that polyethylenes (PEs) catalyzed by AMS (or BAMS) supported metallocene catalysts at the molar ratios of Al/Zr = 100, 300 and 500 were of bimodal molecular weight distribution (BMWD); while PEs catalyzed by the above catalysts at the molar ratios of Al/Zr 〉 800 were of monomodal molecular weight distribution (MMWD). However, MS (or AS) supported metallocene catalysts could only produce PEs with MMWD in spite of the molar ratio of Al/Zr. It was because that AMS (or BAMS) supported catalysts possessed two active sites for ethylene polymerization at low molar ratios of Al/Zr due to the combination effects of mesopore geometrical constraint and amino groups of the supports, which was confirmed by X-ray photoelectron spectroscopy. This brings forward a novel and easy method for the synthesis of polyolefin with BMWD.展开更多
文摘Seven new binuclear titanocenes with different linking bridges, unsubstituted or substituted on the Cp rings, were synthesized and tested for their effect on ethylene polymerization in the presence of MAO. The polyethylenes thus obtained had broad MWD or even bimodal GPC curves, as compared with that from two reference mononuclear titanocenes. This is explained by the difference in degree of steric hindrance around the active center sites imposed by the bulky substituted ligands assuming different configurations in the rotation of the catalyst molecules. Lower polymerization temperatures alleviate the effect of these configuration differences, as reflected in change in MW and (M) over bar(w)/(M) over bar(n). This effect is not caused by decomposition or disproportionation of the binuclear titanocenes as evidenced by the stability of the catalyst.
基金the support of the National Natural Science Foundation of China (No. 20174039) the Ministry of Science and Technology of China (No. 2005CB623800).
文摘The possibility of mesoporous acid solid as a carder for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM-41 and AIMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPOI mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.
文摘The kinetics of nonisothermal and isothermal crystallization of metallocene catalyzed and conventional polyethylenes has been studied by differential scanning calorimetry. Using Avrami equation, Ozawa theory and Mo Zhishen method, the experimental data have been analyzed. It is shown that metallocene polyethylene possesses a higher rate of crystallization due to a higher stereoregularity of its molecular chains. Moreover, they have different nonisothermal crystallization mechanisms and identical isothermal crystallization mechanisms.
基金supported by the National Natural Science Foundation of China(Nos.50525311,20734006 and 50621302)
文摘Mesoporous silica (MS), 3-aminopropyltriethoxysilane (APTES) modified mesoporous silica (AMS), bis(3- trimethoxysilylpropyl)amine modified mesoporous silica (BAMS) and APTES modified solid spherical silica (AS) were prepared and used to immobilize metallocene catalysts for ethylene polymerization. Gel permeation chromatography results showed that polyethylenes (PEs) catalyzed by AMS (or BAMS) supported metallocene catalysts at the molar ratios of Al/Zr = 100, 300 and 500 were of bimodal molecular weight distribution (BMWD); while PEs catalyzed by the above catalysts at the molar ratios of Al/Zr 〉 800 were of monomodal molecular weight distribution (MMWD). However, MS (or AS) supported metallocene catalysts could only produce PEs with MMWD in spite of the molar ratio of Al/Zr. It was because that AMS (or BAMS) supported catalysts possessed two active sites for ethylene polymerization at low molar ratios of Al/Zr due to the combination effects of mesopore geometrical constraint and amino groups of the supports, which was confirmed by X-ray photoelectron spectroscopy. This brings forward a novel and easy method for the synthesis of polyolefin with BMWD.