期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Metallographic structure analysis of DC pulsed SAW joint
1
作者 杜乃成 胡绳荪 +2 位作者 李桓 隋永莉 陈宇 《China Welding》 EI CAS 2007年第4期47-50,共4页
Submerged arc welding (SAW) has shortcoming of over heat input, which increases grain size in heat-affected zone ( HAZ) and decreases welding quality and mechanical properties of the joints serioasly. With improve... Submerged arc welding (SAW) has shortcoming of over heat input, which increases grain size in heat-affected zone ( HAZ) and decreases welding quality and mechanical properties of the joints serioasly. With improvements of welding equipment, direct current ( DC) pulsed SAW ( PSAW) was utilized successfully in the research. Comparing DC PSAW with DC common SAW ( CSAW) , the metallographic structure was analyzed with optical and electron microscope, the width of HAZ was measured as well as the width and hardness of the coarse grained HAZ (CGHAZ). The research shows that DC PSAW joint had higher welding penetration, narrower HAZ and CGHAZ, which benefited HAZ performance and welding quality. 展开更多
关键词 PULSE submerged arc welding metallographic structure
下载PDF
Fracture behavior and mechanism of highly fragmented steel cylindrical shell under explosive loading
2
作者 Kang Wang Peng Chen +5 位作者 Xingyun Sun Yufeng Liu Jiayu Meng Xiaoyuan Li Xiongwei Zheng Chuan Xiao 《Defence Technology(防务技术)》 SCIE EI CAS 2024年第6期122-132,共11页
An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of th... An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed.This study investigated the fragmentation performance of a new high-carbon silicon-manganese(HCSiMn)steel cylindrical shell through fragment recovery experiments.Compared with the conventional 45Cr steel shell,the number of small mass fragments produced by the HCSi Mn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model.The fragmentation process of the HCSi Mn shell exhibited more brittle tensile fracture characteristics,with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation.On the one hand,the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite,so that microscopic intergranular fracture reduces the characteristic mass of the fragments;on the other hand,the distribution of alloy carbides can exert a"pinning"effect on the substrate grains,causing more initial cracks to form and propagate along the brittle carbides,further improving the shell fragmentation.Although the killing power radius for light armored vehicles was slightly reduced by about 6%,the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26%based on theoretical assessment.These results provided an experimental basis for high fragmentation warhead design,and to some extent,revealed the correlation mechanism between metallographic structure and shell fragmentation. 展开更多
关键词 Projectile fragmentation Fragment mass distribution Fracture mode metallographic structure Damage power
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部