Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are...Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are frequency-dependent and unchangeable.Here,we present a reconfigurable 2D mechanism-based metamaterial which possesses transformable and frequency-independent elastic properties.Based on the proposed mechanism-based metamaterial,interesting functionalities,such as ternarycoded elastic wave polarizer and programmable refraction,are demonstrated.Particularly,unique ternary-coded polarizers,with 1-trit polarization filtering and 2-trit polarization separating of longitudinal and transverse waves,are first achieved.Then,the strong anisotropy of the proposed metamaterial is harnessed to realize positive-negative bi-refraction,only-positive refraction,and only-negative refraction.Finally,the wave functions with detailed microstructures are numerically verified.展开更多
Metamaterial surfaces play a vital role to achieve the surface waves suppression and in-phase reflection,in order to improve the antenna performance.In this paper,the performance comparison of a fifth generation(5G)an...Metamaterial surfaces play a vital role to achieve the surface waves suppression and in-phase reflection,in order to improve the antenna performance.In this paper,the performance comparison of a fifth generation(5G)antenna design is analyzed and compared with a metamaterial-based antenna for 5G communication system applications.Metamaterial surface is utilized as a reflector due to its in-phase reflection characteristic and high-impedance nature to improve the gain of an antenna.As conventional conducting ground plane does not give enough surface waves suppression which affects the antenna performance in terms of efficiency and gain etc.These factors are well considered in this work and improved by using the metamaterial surface.The radiating element of the proposed metamaterial based antenna is made up of copper material which is backed by the substrate,i.e.,Rogers-4003 with a standard thickness,loss tangent and a relative permittivity of 1.524 mm,0.0027 and 3.55,correspondingly.The proposed antenna with and without metamaterial surface operates at the central frequency of 3.32 GHz and 3.60 GHz,correspondingly.The traditional antenna yields a boresight gain of 2.76 dB which is further improved to 6.26 dB,using the metamaterial surface.The radiation efficiency of the proposed metamaterial-based 5G antenna is above 85%at the desired central frequency.展开更多
Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is at- tributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large ...Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is at- tributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large group index accom- panied with a sharp EIT-like transparency window offers potential applications for slowing down light and sensing.展开更多
Elastic wave absorption at subwavelength scale is of significance in many engineering applications.Non-Hermitian metamaterials show the ability in high-efficiency wave absorption.However,the single functionality of me...Elastic wave absorption at subwavelength scale is of significance in many engineering applications.Non-Hermitian metamaterials show the ability in high-efficiency wave absorption.However,the single functionality of metamaterials is an important limitation on their practical applications for lack of tunability and reconfigurability.Here,we propose a tunable and reconfigurable non-Hermitian piezoelectric metamaterial bar,in which piezoelectric bars connect with resonant circuits,to achieve asymmetric unidirectional perfect absorption(UPA)and symmetric bidirectional perfect absorption(PA)at low frequencies.The two functions can be arbitrarily switched by rearranging shunted circuits.Based on the reverberation-ray matrix(RRM)method,an approach is provided to achieve UPA by setting an exceptional point(EP)in the coupled resonant bandgap.By using the transfer matrix method(TMM)and the finite element method(FEM),it is observed that a non-Hermitian pseudo-band forms between two resonant bandgaps,and the EP appears at the bottom of the pseudo-band.In addition,the genetic algorithm is used to accurately and efficiently design the shunted circuits for desired low-frequency UPA and PA.The present work may provide new strategies for vibration suppression and guided waves manipulation in wide potential applications.展开更多
Circularly polarized light(CPL)has been given great attention because of its extensive application.While several devices for CPL detection have been studied,their performance is affected by the magnitude of photocurre...Circularly polarized light(CPL)has been given great attention because of its extensive application.While several devices for CPL detection have been studied,their performance is affected by the magnitude of photocurrent.In this paper,a self-powered photodetector based on hot electrons in chiral metamaterials is proposed and optimized.CPL can be distinguished by the direction of photocurrent without external bias owing to the interdigital electrodes with asymmetric chiral metamaterials.Distinguished by the direction of photocurrent,the device can easily detect the rotation direction of the CPL electric field,even if it only has a very weak responsivity.The responsivity of the proposed detector is near 1.9 mA/W at the wavelength of 1322 nm,which is enough to distinguish CPL.The detector we proposed has the potential for application in optical communication.展开更多
We show that giant asymmetric transmission and optical rotation for linear polarizations can be achieved by a chiral three-dimensional metamaterial composed of L-shaped and C-shaped metallic particles. Numerical calcu...We show that giant asymmetric transmission and optical rotation for linear polarizations can be achieved by a chiral three-dimensional metamaterial composed of L-shaped and C-shaped metallic particles. Numerical calcu- lations on the electric field distributions indicate that the coupling between the electric dipolar and quadrupolar resonances in the L- and C-shaped metallic particles contributes to these effects.展开更多
In order to simulate metamaterial rotational symmetric open region problems,unconditionally stable perfectly match layer(PML)implementation is proposed in the body of revolution(BOR)finite-difference time-domain(FDTD)...In order to simulate metamaterial rotational symmetric open region problems,unconditionally stable perfectly match layer(PML)implementation is proposed in the body of revolution(BOR)finite-difference time-domain(FDTD)lattice.More precisely,the proposed algorithm is implemented by the Crank-Nicolson(CN)Douglas-Gunn(DG)procedure for BOR metamaterial simulation.The constitutive relationship of metamaterial can be expressed by the Drude model and calculated by the piecewise linear recursive convolution(PLRC)approach.The effectiveness including absorption,efficiency,and accuracy is demonstrated through the numerical example.It can be concluded that the proposed implementation is to take the advantages of the CNDG-PML procedure,PLRC approach,and BORFDTD algorithm in terms of considerable accuracy,enhanced absorption and remarkable efficiency.Meanwhile,it can be demonstrated that the proposed scheme can maintain its unconditional stability when the time step exceeds the CourantFriedrichs-Levy(CFL)condition.展开更多
Transmission line theory uses the complex nature of permeability and permittivity of a conventional magnetic absorber to evaluate its absorption properties and mechanism. However, because there is no method to obtain ...Transmission line theory uses the complex nature of permeability and permittivity of a conventional magnetic absorber to evaluate its absorption properties and mechanism. However, because there is no method to obtain the electromagnetic parameters of a metamaterial-absorber integrated layer(composed of a medium layer and a periodic metal array), this theory is seldom used to study the absorption properties of the metamaterial absorber. We propose a symmetry model to achieve an equivalent complex permittivity and permeability model for the integrated layer, which can be combined with the transmission line theory to calculate metamaterial absorption properties. The calculation results derived from both the transmission line theory and the high-frequency structure simulator are in good agreement. This method will be beneficial in practical investigations of the absorption mechanism of a metamaterial absorber.展开更多
Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between di...Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.展开更多
We develop a simple new design for a multi-band metamaterial absorber(MTMA)for radar applications.Computer Simulation Technology(CST)Studio Suite 2018 was used for the numerical analysis and absorption study.The simul...We develop a simple new design for a multi-band metamaterial absorber(MTMA)for radar applications.Computer Simulation Technology(CST)Studio Suite 2018 was used for the numerical analysis and absorption study.The simulated results show four high peaks at 5.6 GHz,7.6 GHz,10.98 GHz,and 11.29 GHz corresponding to absorption characteristics of 100%,100%,99%,and 99%,respectively.Furthermore,two different structures were designed and compared with the proposed MTMA.The proposed structure remained insensitive for any incident angle and polarization angle from 0°to60°.Moreover,negative constitutive parameters were retrieved numerically.To support the simulated results,the proposed design was fabricated by using a computer numerical control-based printed circuit board prototyping machine and tested experimentally in a microwave laboratory.The absorption mechanism of the proposed MTMA is presented through the surface current and electric field distributions.The novelties of the proposed structure are a simple and new design,ease of fabrication,low cost,durability,suitability for real-time applications and long-term stability given the fabrication technique and non-destructive measurement method and very high absorption.The proposed structure has potential applications in C and X band frequency ranges.展开更多
Implantable hydrogel-based bioelectronics(IHB)can precisely monitor human health and diagnose diseases.However,achieving biodegradability,biocompatibility,and high conformality with soft tissues poses significant chal...Implantable hydrogel-based bioelectronics(IHB)can precisely monitor human health and diagnose diseases.However,achieving biodegradability,biocompatibility,and high conformality with soft tissues poses significant challenges for IHB.Gelatin is the most suitable candidate for IHB since it is a collagen hydrolysate and a substantial part of the extracellular matrix found naturally in most tissues.This study used 3D printing ultrafine fiber networks with metamaterial design to embed into ultra-low elastic modulus hydrogel to create a novel gelatin-based conductive film(GCF)with mechanical programmability.The regulation of GCF nearly covers soft tissue mechanics,an elastic modulus from 20 to 420 kPa,and a Poisson’s ratio from-0.25 to 0.52.The negative Poisson’s ratio promotes conformality with soft tissues to improve the efficiency of biological interfaces.The GCF can monitor heartbeat signals and respiratory rate by determining cardiac deformation due to its high conformability.Notably,the gelatin characteristics of the biodegradable GCF enable the sensor to monitor and support tissue restoration.The GCF metamaterial design offers a unique idea for bioelectronics to develop implantable sensors that integrate monitoring and tissue repair and a customized method for endowing implanted sensors to be highly conformal with soft tissues.展开更多
A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the ban...A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.展开更多
This study proposes a bi-layer windmill-shaped metamaterial that consists of resonators, with similar shapes, on both sides of a dielectric substrate. In this study, the second layer is rotated clockwise around the su...This study proposes a bi-layer windmill-shaped metamaterial that consists of resonators, with similar shapes, on both sides of a dielectric substrate. In this study, the second layer is rotated clockwise around the substrate normal at 90°and thereafter flipped in the first layer. Due to the introduction of a windmill-like shape, the resonant structures result in new resonant modes and thus can achieve multi-band high-efficiency cross-polarization conversions and asymmetric transmissions(ATs) for a linearly polarized incident plane wave with a maximum asymmetric parameter of 0.72. Depending on the geometric parameters of our windmill-shaped structures, the AT effects can be flexibly modulated in a broad multiband from 160 THz to 400 THz, which has not been reported in previous studies. These outstanding AT effects provide potential applications in optical diodes, polarization control switches, and other nano-devices.展开更多
基金supported by the National Key R&D Program of China(No.2021YFE0110900)the National Natural Science Foundation of China(Nos.U22B2078 and 11991033)。
文摘Elastic metamaterials with unusual elastic properties offer unprecedented ways to modulate the polarization and propagation of elastic waves.However,most of them rely on the resonant structural components,and thus are frequency-dependent and unchangeable.Here,we present a reconfigurable 2D mechanism-based metamaterial which possesses transformable and frequency-independent elastic properties.Based on the proposed mechanism-based metamaterial,interesting functionalities,such as ternarycoded elastic wave polarizer and programmable refraction,are demonstrated.Particularly,unique ternary-coded polarizers,with 1-trit polarization filtering and 2-trit polarization separating of longitudinal and transverse waves,are first achieved.Then,the strong anisotropy of the proposed metamaterial is harnessed to realize positive-negative bi-refraction,only-positive refraction,and only-negative refraction.Finally,the wave functions with detailed microstructures are numerically verified.
基金This work was supported by the Research Program through the National Research Foundation of Korea,NRF-2019R1A2C1005920,S.K.
文摘Metamaterial surfaces play a vital role to achieve the surface waves suppression and in-phase reflection,in order to improve the antenna performance.In this paper,the performance comparison of a fifth generation(5G)antenna design is analyzed and compared with a metamaterial-based antenna for 5G communication system applications.Metamaterial surface is utilized as a reflector due to its in-phase reflection characteristic and high-impedance nature to improve the gain of an antenna.As conventional conducting ground plane does not give enough surface waves suppression which affects the antenna performance in terms of efficiency and gain etc.These factors are well considered in this work and improved by using the metamaterial surface.The radiating element of the proposed metamaterial based antenna is made up of copper material which is backed by the substrate,i.e.,Rogers-4003 with a standard thickness,loss tangent and a relative permittivity of 1.524 mm,0.0027 and 3.55,correspondingly.The proposed antenna with and without metamaterial surface operates at the central frequency of 3.32 GHz and 3.60 GHz,correspondingly.The traditional antenna yields a boresight gain of 2.76 dB which is further improved to 6.26 dB,using the metamaterial surface.The radiation efficiency of the proposed metamaterial-based 5G antenna is above 85%at the desired central frequency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11174051,11004026,11074034,and 61271057)the National Basic Research Program of China (Grant No.2010CB923401)the Youth Study Plan from Southeast University
文摘Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is at- tributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large group index accom- panied with a sharp EIT-like transparency window offers potential applications for slowing down light and sensing.
基金the National Natural Science Foundation of China(Nos.11991033 and 11890681)。
文摘Elastic wave absorption at subwavelength scale is of significance in many engineering applications.Non-Hermitian metamaterials show the ability in high-efficiency wave absorption.However,the single functionality of metamaterials is an important limitation on their practical applications for lack of tunability and reconfigurability.Here,we propose a tunable and reconfigurable non-Hermitian piezoelectric metamaterial bar,in which piezoelectric bars connect with resonant circuits,to achieve asymmetric unidirectional perfect absorption(UPA)and symmetric bidirectional perfect absorption(PA)at low frequencies.The two functions can be arbitrarily switched by rearranging shunted circuits.Based on the reverberation-ray matrix(RRM)method,an approach is provided to achieve UPA by setting an exceptional point(EP)in the coupled resonant bandgap.By using the transfer matrix method(TMM)and the finite element method(FEM),it is observed that a non-Hermitian pseudo-band forms between two resonant bandgaps,and the EP appears at the bottom of the pseudo-band.In addition,the genetic algorithm is used to accurately and efficiently design the shunted circuits for desired low-frequency UPA and PA.The present work may provide new strategies for vibration suppression and guided waves manipulation in wide potential applications.
基金This work was supported by the National Natural Science Foundation of China(No.61705065)Hunan Provincial Natural Science Foundation of China(No.2017JJ3034)+1 种基金Technology Program of Changsha(No.kq1804001)National Training Program of Innovation and Entrepreneurship for undergraduates(No.S201910532166).
文摘Circularly polarized light(CPL)has been given great attention because of its extensive application.While several devices for CPL detection have been studied,their performance is affected by the magnitude of photocurrent.In this paper,a self-powered photodetector based on hot electrons in chiral metamaterials is proposed and optimized.CPL can be distinguished by the direction of photocurrent without external bias owing to the interdigital electrodes with asymmetric chiral metamaterials.Distinguished by the direction of photocurrent,the device can easily detect the rotation direction of the CPL electric field,even if it only has a very weak responsivity.The responsivity of the proposed detector is near 1.9 mA/W at the wavelength of 1322 nm,which is enough to distinguish CPL.The detector we proposed has the potential for application in optical communication.
基金Supported by the International Science and Technology Cooperation Program of Anhui Province under Grant No 1403062027the Anhui Provincial Natural Science Foundation under Grant Nos KJ2014A195 and 1308085MA13the Undergraduate Scientific and Technological Innovation Project under Grant Nos AH201310371022,2013jyxml36,2013ZYJS04 and FS201310371082
文摘We show that giant asymmetric transmission and optical rotation for linear polarizations can be achieved by a chiral three-dimensional metamaterial composed of L-shaped and C-shaped metallic particles. Numerical calcu- lations on the electric field distributions indicate that the coupling between the electric dipolar and quadrupolar resonances in the L- and C-shaped metallic particles contributes to these effects.
基金supported by the National Key Laboratory of Science and Technology on Space Microwave(6142411032201)the National Key Research and Development Program of China(2020YFB1807400)+2 种基金the National Natural Science Foundation of China(6157102261971022)the National Key Laboratory Foundation of China(61424020305)。
文摘In order to simulate metamaterial rotational symmetric open region problems,unconditionally stable perfectly match layer(PML)implementation is proposed in the body of revolution(BOR)finite-difference time-domain(FDTD)lattice.More precisely,the proposed algorithm is implemented by the Crank-Nicolson(CN)Douglas-Gunn(DG)procedure for BOR metamaterial simulation.The constitutive relationship of metamaterial can be expressed by the Drude model and calculated by the piecewise linear recursive convolution(PLRC)approach.The effectiveness including absorption,efficiency,and accuracy is demonstrated through the numerical example.It can be concluded that the proposed implementation is to take the advantages of the CNDG-PML procedure,PLRC approach,and BORFDTD algorithm in terms of considerable accuracy,enhanced absorption and remarkable efficiency.Meanwhile,it can be demonstrated that the proposed scheme can maintain its unconditional stability when the time step exceeds the CourantFriedrichs-Levy(CFL)condition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574122 and 51731001)the Fundamental Research Funds for the Central Universities,China(Grant No.kzujbky-2017-k20)the Innovation Special Zone of National Defence Science and Technology,China
文摘Transmission line theory uses the complex nature of permeability and permittivity of a conventional magnetic absorber to evaluate its absorption properties and mechanism. However, because there is no method to obtain the electromagnetic parameters of a metamaterial-absorber integrated layer(composed of a medium layer and a periodic metal array), this theory is seldom used to study the absorption properties of the metamaterial absorber. We propose a symmetry model to achieve an equivalent complex permittivity and permeability model for the integrated layer, which can be combined with the transmission line theory to calculate metamaterial absorption properties. The calculation results derived from both the transmission line theory and the high-frequency structure simulator are in good agreement. This method will be beneficial in practical investigations of the absorption mechanism of a metamaterial absorber.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12002073 and 12372122)the National Key Research and Development Plan of China(Grant No.2020YFB 1709401)+2 种基金the Science Technology Plan of Liaoning Province(Grant No.2023JH2/101600044)the Liaoning Revitalization Talents Pro-gram(Grant No.XLYC2001003)111 Project of China(Grant No.B14013).
文摘Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.
文摘We develop a simple new design for a multi-band metamaterial absorber(MTMA)for radar applications.Computer Simulation Technology(CST)Studio Suite 2018 was used for the numerical analysis and absorption study.The simulated results show four high peaks at 5.6 GHz,7.6 GHz,10.98 GHz,and 11.29 GHz corresponding to absorption characteristics of 100%,100%,99%,and 99%,respectively.Furthermore,two different structures were designed and compared with the proposed MTMA.The proposed structure remained insensitive for any incident angle and polarization angle from 0°to60°.Moreover,negative constitutive parameters were retrieved numerically.To support the simulated results,the proposed design was fabricated by using a computer numerical control-based printed circuit board prototyping machine and tested experimentally in a microwave laboratory.The absorption mechanism of the proposed MTMA is presented through the surface current and electric field distributions.The novelties of the proposed structure are a simple and new design,ease of fabrication,low cost,durability,suitability for real-time applications and long-term stability given the fabrication technique and non-destructive measurement method and very high absorption.The proposed structure has potential applications in C and X band frequency ranges.
基金This work was sponsored by the National Natural Science Foundation of China(No.52235007,52325504)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004).
文摘Implantable hydrogel-based bioelectronics(IHB)can precisely monitor human health and diagnose diseases.However,achieving biodegradability,biocompatibility,and high conformality with soft tissues poses significant challenges for IHB.Gelatin is the most suitable candidate for IHB since it is a collagen hydrolysate and a substantial part of the extracellular matrix found naturally in most tissues.This study used 3D printing ultrafine fiber networks with metamaterial design to embed into ultra-low elastic modulus hydrogel to create a novel gelatin-based conductive film(GCF)with mechanical programmability.The regulation of GCF nearly covers soft tissue mechanics,an elastic modulus from 20 to 420 kPa,and a Poisson’s ratio from-0.25 to 0.52.The negative Poisson’s ratio promotes conformality with soft tissues to improve the efficiency of biological interfaces.The GCF can monitor heartbeat signals and respiratory rate by determining cardiac deformation due to its high conformability.Notably,the gelatin characteristics of the biodegradable GCF enable the sensor to monitor and support tissue restoration.The GCF metamaterial design offers a unique idea for bioelectronics to develop implantable sensors that integrate monitoring and tissue repair and a customized method for endowing implanted sensors to be highly conformal with soft tissues.
基金supported by the National Natural Science Foundation of China(Nos.12372019,12072222,12132010,12021002,and 11991032)the Open Projects of State Key Laboratory for Strength and Structural Integrity of China(No.ASSIKFJJ202303002)+1 种基金the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures of China(No.SKLTESKF1901)the Aeronautical Science Foundation of China(No.ASFC-201915048001)。
文摘A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies.
基金Project supported by the National Youth Foundation of China(Grant Nos.11904200 and 11704219)the National Natural Science Foundation of China(Grant No.11774053)+3 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190726)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.18KJD140004)NJUPT-SF(Grant No.NY218099)the Opening Project of the Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology(Grant No.hxkj2019007).
文摘This study proposes a bi-layer windmill-shaped metamaterial that consists of resonators, with similar shapes, on both sides of a dielectric substrate. In this study, the second layer is rotated clockwise around the substrate normal at 90°and thereafter flipped in the first layer. Due to the introduction of a windmill-like shape, the resonant structures result in new resonant modes and thus can achieve multi-band high-efficiency cross-polarization conversions and asymmetric transmissions(ATs) for a linearly polarized incident plane wave with a maximum asymmetric parameter of 0.72. Depending on the geometric parameters of our windmill-shaped structures, the AT effects can be flexibly modulated in a broad multiband from 160 THz to 400 THz, which has not been reported in previous studies. These outstanding AT effects provide potential applications in optical diodes, polarization control switches, and other nano-devices.