期刊文献+
共找到2,441篇文章
< 1 2 123 >
每页显示 20 50 100
玉米ZmZIM家族基因鉴定及其对氮素的响应特征
1
作者 孙扬名 张明亮 +2 位作者 葛敏 邬奇 赵涵 《江苏农业学报》 CSCD 北大核心 2024年第4期577-590,共14页
为明确玉米ZmZIM家族基因结构、位置、编码蛋白质性质及其对氮素的响应特征,本研究利用TBtools、MEGA X等软件分析玉米ZmZIM家族基因的结构、染色体位置、顺式作用元件及系统发育关系及其编码蛋白质的理化性质、保守结构域及基序,结合... 为明确玉米ZmZIM家族基因结构、位置、编码蛋白质性质及其对氮素的响应特征,本研究利用TBtools、MEGA X等软件分析玉米ZmZIM家族基因的结构、染色体位置、顺式作用元件及系统发育关系及其编码蛋白质的理化性质、保守结构域及基序,结合玉米不同发育时期不同器官的转录组数据及充足氮与低氮水平下四叶一心期玉米地上部转录组数据解析玉米ZmZIM家族基因的表达模式及差异。结果表明:从玉米全基因组中共鉴定到32个玉米ZmZIM基因,主要分布于1号、2号、5号和7号染色体,8号和10号染色体上无ZmZIM基因。32个ZmZIM基因可划分为4个亚类,其编码蛋白质由134~467个氨基酸残基构成,均为亲水性蛋白质且全部定位在细胞核中。32个ZmZIM基因启动子区域顺式作用元件主要有调控元件、光信号响应元件、激素信号响应元件、胁迫响应元件、生长发育元件及蛋白质结合位点等6大类。不同发育时期,ZmZIM基因在玉米不同器官中存在差异性表达;在充足氮与低氮处理下,随着处理时间的增加,玉米植株地上部12个ZmZIM基因无表达或相对表达量较低,6个ZmZIM基因相对表达量较高且稳定,其余的14个ZmZIM基因的相对表达量差异较大;ZmZIM5、ZmZIM16、和ZmZIM313个基因的相对表达量普遍高于其他基因。充足氮条件下,ZmZIM8、ZmZIM15、ZmZIM20、ZmZIM24、ZmZIM29和ZmZIM31基因的相对表达量普遍高于低氮条件。本研究结果为玉米氮高效吸收利用基因筛选和利用奠定基础。 展开更多
关键词 玉米 zim转录因子 基因家族分析 氮响应
下载PDF
长链非编码RNA ZIM2-AS1在肝细胞癌中的表达及其临床意义
2
作者 孙晋 李英楠 +4 位作者 石梦姣 田红卫 慕艳华 李君 李宗芳 《中国免疫学杂志》 CAS CSCD 北大核心 2024年第1期116-121,共6页
目的:利用癌症基因组图谱(TCGA)数据探讨长链非编码RNA(lncRNA)ZIM2-AS1在肝细胞癌(HCC)中的表达及其临床意义和诊断价值。方法:从TCGA数据库下载374例HCC组织样本和50例癌旁组织样本的转录组测序(RNA-seq)数据及相关临床资料,基于R语... 目的:利用癌症基因组图谱(TCGA)数据探讨长链非编码RNA(lncRNA)ZIM2-AS1在肝细胞癌(HCC)中的表达及其临床意义和诊断价值。方法:从TCGA数据库下载374例HCC组织样本和50例癌旁组织样本的转录组测序(RNA-seq)数据及相关临床资料,基于R语言进行相关生物信息学分析,以解析ZIM2-AS1在HCC中的表达模式及其与临床病理特征、预后及免疫细胞浸润的相关性,并评估其在HCC中的诊断价值;采用qRT-PCR检测ZIM2-AS1在人正常肝细胞及不同HCC细胞系中的表达情况。结果:ZIM2-AS1在HCC组织中的表达呈升高趋势(P<0.001),其表达水平与患者年龄、性别、肿瘤N分期、组织学分级和AFP水平显著相关(P均<0.05),且高表达患者的总生存期(OS)和疾病相关生存期(DSS)显著短于低表达患者(P<0.05),是影响HCC患者OS的独立危险因素。肿瘤免疫细胞浸润分析显示,ZIM2-AS1与Th2细胞、CD56brightNK细胞、滤泡辅助性T细胞(Tfh)、中性粒细胞和浆细胞样树突状细胞(pDC)的浸润水平显著相关(|Spearman's r|>0.1,P<0.05)。受试者工作特征(ROC)曲线分析显示ZIM2-AS1表达水平对HCC、N0分期、组织学分级G1和G2期、OS及DSS均具有一定诊断价值(AUC均>0.50)。qRT-PCR结果显示ZIM2-AS1在HCC细胞系中的表达水平显著高于人正常肝细胞(P均<0.05)。结论:LncRNA ZIM2-AS1的高表达是HCC预后不良的独立危险因素,具有成为HCC诊断、预后判断及肿瘤免疫微环境评估生物标志物的潜在应用价值。 展开更多
关键词 长链非编码RNA zim2-AS1 肝细胞癌 预后 诊断 免疫细胞浸润
下载PDF
Wireless Power Supply Based on MNG-MNZ Metamaterial for Cardiac Pacemakers
3
作者 Weihua Chen Jingtao Jia +2 位作者 Xiaoheng Yan Yuhang Song Jiayi Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期103-112,共10页
To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-ne... To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-negative(MNG) and mu-nearzero(MNZ) metamaterials. First, a hybrid metamaterial consisted of central MNG unit for magnetic field concentration and surrounding MNZ units for magnetic leakage shielding was established by theoretical calculation. Afterwards, the magnetic field distribution of wireless power supply system with MNG-MNZ metamaterial slab was acquired via finite element simulation and verified to be better than the distribution with conventional MNG slab deployed. Finally, an experimental platform of wireless power supply system was established with which power transfer experiment and system temperature rise experiment were conducted.Simulation and experimental results showed that the power transfer efficiency was improved from 44.44%,19.42%, 8.63% and 6.19% to 55.77%, 62.39%, 20.81%and 14.52% at 9.6 mm, 20 mm, 30 mm and 50 mm,respectively. The maximum SAR acquired by SAR simulation under human body environment was-7.14 dbm and maximum reduction of the magnetic field strength around the receiving coil was 2.82 A/m. The maximum temperature rise during 30min charging test was 3.85℃,and the safety requirements of human bodies were met. 展开更多
关键词 Cardiac pacemaker MNG metamaterial MNZ metamaterial Wireless power supply system
下载PDF
Prediction of Bandwidth of Metamaterial Antenna Using Pearson Kernel-Based Techniques
4
作者 Sherly Alphonse S.Abinaya Sourabh Paul 《Computers, Materials & Continua》 SCIE EI 2024年第3期3449-3467,共19页
The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas.The radiation cost and quality factor of the antenna are influenced by the size of the antenna.Metamateri... The use of metamaterial enhances the performance of a specific class of antennas known as metamaterial antennas.The radiation cost and quality factor of the antenna are influenced by the size of the antenna.Metamaterial antennas allow for the circumvention of the bandwidth restriction for small antennas.Antenna parameters have recently been predicted using machine learning algorithms in existing literature.Machine learning can take the place of the manual process of experimenting to find the ideal simulated antenna parameters.The accuracy of the prediction will be primarily dependent on the model that is used.In this paper,a novel method for forecasting the bandwidth of the metamaterial antenna is proposed,based on using the Pearson Kernel as a standard kernel.Along with these new approaches,this paper suggests a unique hypersphere-based normalization to normalize the values of the dataset attributes and a dimensionality reduction method based on the Pearson kernel to reduce the dimension.A novel algorithm for optimizing the parameters of Convolutional Neural Network(CNN)based on improved Bat Algorithm-based Optimization with Pearson Mutation(BAO-PM)is also presented in this work.The prediction results of the proposed work are better when compared to the existing models in the literature. 展开更多
关键词 ANTENNA pearson optimization BANDWIDTH metamaterial
下载PDF
Nonreciprocal thermal metamaterials:Methods and applications
5
作者 Zhengjiao Xu Chuanbao Liu +2 位作者 Xueqian Wang Yongliang Li Yang Bai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1678-1693,共16页
Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,... Nonreciprocity of thermal metamaterials has significant application prospects in isolation protection,unidirectional transmission,and energy harvesting.However,due to the inherent isotropic diffusion law of heat flow,it is extremely difficult to achieve nonreciprocity of heat transfer.This review presents the recent developments in thermal nonreciprocity and explores the fundamental theories,which underpin the design of nonreciprocal thermal metamaterials,i.e.,the Onsager reciprocity theorem.Next,three methods for achieving nonreciprocal metamaterials in the thermal field are elucidated,namely,nonlinearity,spatiotemporal modulation,and angular momentum bias,and the applications of nonreciprocal thermal metamaterials are outlined.We also discuss nonreciprocal thermal radiation.Moreover,the potential applications of nonreciprocity to other Laplacian physical fields are discussed.Finally,the prospects for advancing nonreciprocal thermal metamaterials are highlighted,including developments in device design and manufacturing techniques and machine learning-assisted material design. 展开更多
关键词 thermal metamaterials NONRECIPROCITY NONLINEARITY spatiotemporal modulation
下载PDF
Terahertz toroidal dipole metamaterial sensors for detection of aflatoxin B1
6
作者 徐建伟 欧阳收剑 +4 位作者 段守鑫 邹林儿 叶丹妮 杨思嘉 邓晓华 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期672-676,共5页
Terahertz metamaterial biosensors have attracted significant attention in the biological field due to their advantages of label-free,real-time and in situ detection.In this paper,a highly sensitive metamaterial sensor... Terahertz metamaterial biosensors have attracted significant attention in the biological field due to their advantages of label-free,real-time and in situ detection.In this paper,a highly sensitive metamaterial sensor with semi-ring mirror symmetry based on toroidal dipole resonance is designed for a new metamaterial biosensor.It is shown that a refractive index sensitivity of 337.5 GHz per refractive index unit can be achieved under an analyte of saturated thickness near a 1.33 THz transmission dip.For biosensor samples where aflatoxin B1 is dropped on the metamaterial surface in our experiment,dip amplitudes of transmission varying from 0.1904 to 0.203 and 0.2093 are observed as aflatoxin B1 concentrations are altered from 0 to 0.001μg·ml-1 and to 0.01μg·ml-1,respectively.Furthermore,when aflatoxin B1 concentrations are 0.1μg·ml-1,1μg·ml-1,10μg·ml-1 and 100μg·ml-1,dip amplitudes of 0.2179,0.226,0.2384 and 0.2527 and dip redshifts of 10.1 GHz,20.1 GHz,27.7 GHz and 37.6 GHz are respectively observed.These results illustrate high-sensitivity,label-free detection of aflatoxin B1,enriching the applications of sensors in the terahertz domain. 展开更多
关键词 TERAHERTZ metamaterial toroidal dipole aflatoxin B1
下载PDF
General three-dimensional thermal illusion metamaterials
7
作者 刘天丰 王兆宸 +1 位作者 朱展 胡润 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期41-47,共7页
Thermal illusion aims to create fake thermal signals or hide the thermal target from the background thermal field to mislead infrared observers,and illusion thermotics was proposed to regulate heat flux with artificia... Thermal illusion aims to create fake thermal signals or hide the thermal target from the background thermal field to mislead infrared observers,and illusion thermotics was proposed to regulate heat flux with artificially structured metamaterials for thermal illusion.Most theoretical and experimental works on illusion thermotics focus on two-dimensional materials,while heat transfer in real three-dimensional(3D)objects remains elusive,so the general 3D illusion thermotics is urgently demanded.In this study,we propose a general method to design 3D thermal illusion metamaterials with varying illusions at different sizes and positions.To validate the generality of the 3D method for thermal illusion metamaterials,we realize thermal functionalities of thermal shifting,splitting,trapping,amplifying and compressing.In addition,we propose a special way to simplify the design method under the condition that the size of illusion target is equal to the size of original heat source.The 3D thermal illusion metamaterial paves a general way for illusion thermotics and triggers the exploration of illusion metamaterials for more functionalities and applications. 展开更多
关键词 thermal illusion thermal metamaterials transformation thermotics
下载PDF
Gelatin-Based Metamaterial Hydrogel Films with High Conformality for Ultra-Soft Tissue Monitoring
8
作者 Yuewei Chen Yanyan Zhou +10 位作者 Zihe Hu Weiying Lu Zhuang Li Ning Gao Nian Liu Yuanrong Li Jing He Qing Gao Zhijian Xie Jiachun Li Yong He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期347-364,共18页
Implantable hydrogel-based bioelectronics(IHB)can precisely monitor human health and diagnose diseases.However,achieving biodegradability,biocompatibility,and high conformality with soft tissues poses significant chal... Implantable hydrogel-based bioelectronics(IHB)can precisely monitor human health and diagnose diseases.However,achieving biodegradability,biocompatibility,and high conformality with soft tissues poses significant challenges for IHB.Gelatin is the most suitable candidate for IHB since it is a collagen hydrolysate and a substantial part of the extracellular matrix found naturally in most tissues.This study used 3D printing ultrafine fiber networks with metamaterial design to embed into ultra-low elastic modulus hydrogel to create a novel gelatin-based conductive film(GCF)with mechanical programmability.The regulation of GCF nearly covers soft tissue mechanics,an elastic modulus from 20 to 420 kPa,and a Poisson’s ratio from-0.25 to 0.52.The negative Poisson’s ratio promotes conformality with soft tissues to improve the efficiency of biological interfaces.The GCF can monitor heartbeat signals and respiratory rate by determining cardiac deformation due to its high conformability.Notably,the gelatin characteristics of the biodegradable GCF enable the sensor to monitor and support tissue restoration.The GCF metamaterial design offers a unique idea for bioelectronics to develop implantable sensors that integrate monitoring and tissue repair and a customized method for endowing implanted sensors to be highly conformal with soft tissues. 展开更多
关键词 Implantable hydrogel-based bioelectronics Conformality 3D printing metamaterial design
下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
9
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND Vibration attenuation Low-frequency ultrasound vibration Transmission loss
下载PDF
A low-profile metamaterial absorber with ultrawideband reflectionless and wide-angular stability
10
作者 Feihong Lin Zhongming Yan +3 位作者 Ping Wang Yu Wang Hongcheng Zhou Haoran Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期258-268,共11页
An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum fr... An ultrawideband reflectionless metamaterial absorber(MA)is proposed by replacing the metallic ground with the complementary split-ring resonator(CSRR)structure.The proposed MA exhibits-10 d B reflectivity spectrum from 1 GHz to 20 GHz,which maintains more than 90%absorption from 1.5 GHz to20 GHz.Furthermore,it achieves angle stability for TE and TM polarization at oblique incident angles up to 40°and 65°,respectively.To achieve broadband absorption spectrum,we have adopted a single-layer high-impedance surface(HIS)loaded with a double-layer magnetic material(MM)structure.To further realize the RCS reduction into a lower frequency range,we have employed the scattering cancellation technology into the traditional metallic ground.Finally,we have fabricated a sample exhibiting the 10 d B RCS reduction from 1 GHz to 20 GHz with a thickness of 10 mm.Measurement and simulation results confirm that the proposed MA exhibits excellent comprehensive performance,making it suitable for many practical applications. 展开更多
关键词 metamaterial absorber(MA) Magnetic material(MM) High-impedance surface(HIS) Scattering cancellation technology ULTRAWIDEBAND Wide-angular stable
下载PDF
Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design 被引量:1
11
作者 Qian Zhou Tiantian Shi +7 位作者 Bei Xue Shengyue Gu Wei Ren Fang Ye Xiaomeng Fan Wenyan Duan Zihan Zhang Lifei Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1198-1206,共9页
The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness,lightweight,broadband,and strong absorption.Herein,a novel multi-layer ... The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness,lightweight,broadband,and strong absorption.Herein,a novel multi-layer stepped metamaterial absorber with gradient electromagnetic properties is proposed.The complex permittivity and permeability of each layer are tailored via the proportion of carbonyliron and carbon-fiber dispersing into the epoxy resin.The proposed metamaterial is further optimized via adjusting the electromagnetic parameters and geometric sizes of each layer.Comparing with the four-layer composite with gradient electromagnetic properties which could only realize reflection loss(RL)of less than−6 dB in 2.0-40 GHz,the optimized stepped metamaterial with the same thickness and electromagnetic properties realizes less than−10 dB in the relevant frequency range.Additionally,the RL of less than−15 dB is achieved in the frequency range of 11.2-21.4 GHz and 28.5-40 GHz.The multiple electromagnetic wave absorption mechanism is discussed based on the experimental and simulation results,which is believed to be attributed to the synergy effect induced by multi-scale structures of the metamaterial.Therefore,combining multi-layer structures and periodic stepped structures into a novel gradient absorbing metamaterial would give new insights into designing microwave absorption devices for broadband electromagnetic protections. 展开更多
关键词 broadband absorption metamaterialS gradient impedance multi-scale synergic effect
下载PDF
Symplectic analysis for regulating wave propagation in a one-dimensional nonlinear graded metamaterial 被引量:1
12
作者 Yunping ZHAO Xiuhui HOU +1 位作者 Kai ZHANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第5期745-758,共14页
An analytical method,called the symplectic mathematical method,is proposed to study the wave propagation in a spring-mass chain with gradient arranged local resonators and nonlinear ground springs.Combined with the li... An analytical method,called the symplectic mathematical method,is proposed to study the wave propagation in a spring-mass chain with gradient arranged local resonators and nonlinear ground springs.Combined with the linearized perturbation approach,the symplectic transform matrix for a unit cell of the weakly nonlinear graded metamaterial is derived,which only relies on the state vector.The results of the dispersion relation obtained with the symplectic mathematical method agree well with those achieved by the Bloch theory.It is shown that wider and lower frequency bandgaps are formed when the hardening nonlinearity and incident wave intensity increase.Subsequently,the displacement response and transmission performance of nonlinear graded metamaterials with finite length are studied.The dual tunable effects of nonlinearity and gradation on the wave propagation are explored under different excitation frequencies.For small excitation frequencies,the gradient parameter plays a dominant role compared with the nonlinearity.The reason is that the gradient tuning aims at the gradient arrangement of local resonators,which is limited by the critical value of the local resonator mass.In contrast,for larger excitation frequencies,the hardening nonlinearity is dominant and will contribute to the formation of a new bandgap. 展开更多
关键词 symplectic mathematical method nonlinear graded metamaterial tunable bandgap
下载PDF
Zero-Index Metamaterial Superstrates UWB Antenna for Microwave Imaging Detection
13
作者 Mohd Aminudin Jamlos Nur Amirah Othman +2 位作者 Wan Azani Mustafa Mohd Faizal Jamlos Mohamad Nur Khairul Hafizi Rohani 《Computers, Materials & Continua》 SCIE EI 2023年第4期277-292,共16页
Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since... Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since it is where signal transmission and absorption occur.Ultra-Wideband(UWB)antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna.The lack of conventional head imaging techniques,for instance,Magnetic Resonance Imaging(MRI)and Computerized Tomography(CT)-scan,has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems.Furthermore,the importance ofMWIhas been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis.Other than that,MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reasonings.This paper proposes the novel design of a Zeroindex Split RingResonator(SRR)MTMelement superstrate with a UWB antenna implemented in MWI systems for detecting tumor.The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB.Besides that,the MTM imitates the conduct of the zeroreflection phase on the resonance frequency,which does not exist.An antenna with an MTM unit is of a 7×4 and 10×5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna.Apart from that,Rogers(RT5880)substrate material is employed to fabricate the designed MTM unit cell,with the following characteristics:0.51mm thickness,the loss tangent of 0.02,as well as the relative permittivity of 2.2,with Computer Simulation Technology(CST)performing the simulation and design.Both MTM unit cells of 7×4 and 10×5 attained 0°with respect to the reflection phase at the 2.70 GHz frequency band.The first design,MTM Antenna Design 1,consists of a 7×4 MTM unit cell that observed a rise of 5.70 dB with a return loss(S11)−20.007 dB at 2.70 GHz frequency.The second design,MTM Antenna Design 2,consists of 10×5 MTM unit cells that recorded a gain of 5.66 dB,having the return loss(S11)−19.734 dB at 2.70 GHz frequency.Comparing these two MTM elements superstrates with the antenna,one can notice that the 7×4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10×5 MTM element in realizing MTM element superstrates antenna for MWI. 展开更多
关键词 Zero-index metamaterial(zim) ultra-wideband(UWB) microwave imaging(MWI)detection
下载PDF
Novel transmission property of zero-index metamaterial waveguide doped with gain and lossy defects
14
作者 朱琼干 柴立臣 路海 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期531-536,共6页
Taking inspiration from quantum parity–time(PT) symmetries that have gained immense popularity in the emerging fields of non-Hermitian optics and photonics, the interest of exploring more generalized gain-loss intera... Taking inspiration from quantum parity–time(PT) symmetries that have gained immense popularity in the emerging fields of non-Hermitian optics and photonics, the interest of exploring more generalized gain-loss interactions is never seen down. In this paper we theoretically present new fantastic properties through a zero-index metamaterial(ZIM) waveguide loaded gain and loss defects. For the case of epsilon-and-mu-near-zero(EMNZ) based ZIM medium, electromagnetic(EM)waves are cumulative and the system behaves as an amplifier when the loss cavity coefficient is greater than the gain cavity coefficient. Conversely, when loss is less than gain, EM waves are dissipated and the system behaves as an attenuator.Moreover, our investigation is extended to non-Hermitian scenarios characterized by tailored distributions of gain and loss in the epsilon-near-zero(ENZ) host medium. The transport effect in ZIM waveguide is amplified in one mode, while it is dissipative in the other mode, which breaks the common sense and its physic is analyzed by magnetic flux. That is which cavity has the smaller loss/gain coefficient, the larger its magnetic flux, which cavity dominates. This paper is of significant importance in the manipulation of electromagnetic waves and light amplification as well as the enhancement of matter interactions. 展开更多
关键词 zero-index metamaterial NON-HERMITIAN gain-loss interaction magnetic flux
下载PDF
Auxetic mechanical metamaterials: from soft to stiff
15
作者 Xiang Li Weitao Peng +2 位作者 Wenwang Wu Jian Xiong Yang Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期60-85,共26页
Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physic... Auxetic mechanical metamaterials are artificially architected materials that possess negative Poisson’s ratio,demonstrating transversal contracting deformation under external vertical compression loading.Their physical properties are mainly determined by spatial topological configurations.Traditionally,classical auxetic mechanical metamaterials exhibit relatively lower mechanical stiffness,compared to classic stretching dominated architectures.Nevertheless,in recent years,several novel auxetic mechanical metamaterials with high stiffness have been designed and proposed for energy absorption,load-bearing,and thermal-mechanical coupling applications.In this paper,mechanical design methods for designing auxetic structures with soft and stiff mechanical behavior are summarized and classified.For soft auxetic mechanical metamaterials,classic methods,such as using soft basic material,hierarchical design,tensile braided design,and curved ribs,are proposed.In comparison,for stiff auxetic mechanical metamaterials,design schemes,such as hard base material,hierarchical design,composite design,and adding additional load-bearing ribs,are proposed.Multi-functional applications of soft and stiff auxetic mechanical metamaterials are then reviewed.We hope this study could provide some guidelines for designing programmed auxetics with specified mechanical stiffness and deformation abilities according to demand. 展开更多
关键词 AUXETIC mechanical metamaterial SOFT STIFF structural design
下载PDF
Reconfigurable metamaterial for asymmetric and symmetric elastic wave absorption based on exceptional point in resonant bandgap
16
作者 Jianlin YI Zheng WU +1 位作者 Rongyu XIA Zheng LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期1-20,共20页
Elastic wave absorption at subwavelength scale is of significance in many engineering applications.Non-Hermitian metamaterials show the ability in high-efficiency wave absorption.However,the single functionality of me... Elastic wave absorption at subwavelength scale is of significance in many engineering applications.Non-Hermitian metamaterials show the ability in high-efficiency wave absorption.However,the single functionality of metamaterials is an important limitation on their practical applications for lack of tunability and reconfigurability.Here,we propose a tunable and reconfigurable non-Hermitian piezoelectric metamaterial bar,in which piezoelectric bars connect with resonant circuits,to achieve asymmetric unidirectional perfect absorption(UPA)and symmetric bidirectional perfect absorption(PA)at low frequencies.The two functions can be arbitrarily switched by rearranging shunted circuits.Based on the reverberation-ray matrix(RRM)method,an approach is provided to achieve UPA by setting an exceptional point(EP)in the coupled resonant bandgap.By using the transfer matrix method(TMM)and the finite element method(FEM),it is observed that a non-Hermitian pseudo-band forms between two resonant bandgaps,and the EP appears at the bottom of the pseudo-band.In addition,the genetic algorithm is used to accurately and efficiently design the shunted circuits for desired low-frequency UPA and PA.The present work may provide new strategies for vibration suppression and guided waves manipulation in wide potential applications. 展开更多
关键词 non-Hermitian metamaterial exceptional point(EP) unidirectional perfect absorption(UPA) piezoelectric metamaterial reverberation-ray matrix(RRM)method genetic algorithm
下载PDF
A Thermo-Tunable Metamaterial as an Actively Controlled Broadband Absorber
17
作者 Xiao-Chang Xing Yang Cao +1 位作者 Xiao-Yong Tian Lingling Wu 《Engineering》 SCIE EI CAS CSCD 2023年第1期143-152,共10页
Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively cont... Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively control full-band EM waves. In this paper, we propose a thermo-tunable broadband metamaterial (T-TBM) using paraffin-based composites (PD-Cs) with different phase transition temperatures. Active control of the T-TBM reflection loss peaks from low to high frequency is realized by manipulating the solid–liquid state of the PD-Cs at different phase transition temperatures. The absorption peak bandwidth (where the reflection loss value is less than −30 dB) can be changed, while the broad bandwidth absorption (where the reflection loss value is less than −10 dB) is satisfied by adjusting the temperature of the T-TBM. It is shown that the stagnation of the phase transition temperature of the PD-Cs in the T-TBM provides a time window for actively controlling the EM wave absorption response under different thermal conditions. The device has a broad application prospect in the fields of EM absorption, intelligent metamaterials, multifunctional structural devices, and more. 展开更多
关键词 metamaterialS Active control Thermally tunable Br oadband absorption
下载PDF
Design,fabrication and optimization of electromagnetic absorption metamaterials
18
作者 娄琦 张旭东 夏明岗 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期1-14,共14页
For decades,the rapid development of wireless communication has provided people a smarter way of living.However,a significant increase in electromagnetic pollution is an unavoidable consequence.Evading radar detection... For decades,the rapid development of wireless communication has provided people a smarter way of living.However,a significant increase in electromagnetic pollution is an unavoidable consequence.Evading radar detection in modern warfare has also become an important prerequisite for survival on the battlefield.This review provides a comprehensive overview of the current status and types of electromagnetic absorption metamaterials,especially their design and preparation methods.Moreover,this review focuses on the strategies used to optimize the absorber absorption performance.Finally,this review presents a viewpoint on future research on electromagnetic absorption metamaterials,the main challenges that need to be addressed and the possible solutions. 展开更多
关键词 metamaterial electromagnetic wave absorption fractal design
下载PDF
Active Truss Metamaterials: Modelling and Tuning of Band Gaps
19
作者 Daniel Calegaro Stefano Mariani 《Journal of Materials Science and Chemical Engineering》 2023年第8期127-134,共8页
Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergenc... Periodic composite structures, like acoustic metamaterials (AMMs) and phononic crystals (PCs), are able to prevent the propagation of sound and elastic waves for some specific frequency ranges, leading to the emergence of so-called band gaps. So far, the optimization of the metamaterial properties and therefore of the band gaps has been typically performed on passive PCs and AMMs. Hence, the band gap properties cannot be tuned anymore after the production process of the metamaterials;this problem can be overcome thanks to the use of active materials. In this work, material and geometric nonlinearities are exploited to actively tune the frequency ranges of the band gaps of an architected AMM characterized by a three-dimensional periodicity. Specifically, a hyperelastic piezoelectric composite, that can be obtained by embedding piezo nanoparticles in a soft polymeric matrix, is considered to assess the effects of the nonlinearities on the behavior of sculptured microstructures, taking advantage of instability-induced pattern transformation and piezoelectricity to actively tune the band gaps. . 展开更多
关键词 Acoustic metamaterials HYPERELASTICITY MULTI-PHYSICS PIEZOELECTRICITY BUCKLING
下载PDF
Elastic twisting metamaterial for perfect longitudinal-torsional wave mode conversion
20
作者 Shengjie YAO Yijun CHAI +1 位作者 Xiongwei YANG Yueming LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期515-524,共10页
In this work,we design a twisting metamaterial for longitudinal-torsional(L-T)mode conversion in pipes through exploring the theory of perfect transmodal FabryPerot interference(TFPI).Assuming that the axial and radia... In this work,we design a twisting metamaterial for longitudinal-torsional(L-T)mode conversion in pipes through exploring the theory of perfect transmodal FabryPerot interference(TFPI).Assuming that the axial and radial motions in pipes can be decoupled,we find that the metamaterial can be designed in a rectangular coordinate system,which is much more convenient than that in a cylindrical system.Numerical calculation with detailed microstructures shows that an efficient L-T mode conversion can be obtained in pipes with different radii.In addition,we fabricate mode-converting microstructures on an aluminum pipe and conduct ultrasonic experiments,and the results are in good agreement with the numerical calculations.We expect that the proposed LT mode-converting metamaterial and its design methodology can be applied in various ultrasonic devices. 展开更多
关键词 elastic wave mode conversion elastic metamaterial ultrasonic device
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部