期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
Multistage Extension and Age Dating of the Xiaoqinling Metamorphic Core Complex,Central China 被引量:23
1
作者 ZHANG Jinjiang ZHENG Yadong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第2期139-147,共9页
Abstract There are two extensional systems in the Xiaoqinling metamorphic core complex (XMCC). One is the detachment fault system developed along the peripheries of the XMCC, which extended in an ESE-WNW direction and... Abstract There are two extensional systems in the Xiaoqinling metamorphic core complex (XMCC). One is the detachment fault system developed along the peripheries of the XMCC, which extended in an ESE-WNW direction and whose upper plate moved towards the WNW. The other extensional system includes the retrograde shear zones and normal faults developed within the XMCC, which represent the collapse of the XMCC. Ar-Ar and K-Ar dating shows that the extension of the detachment fault system continued from 135 to 123 Ma, i.e. in the late stage of its evolution at about 127 Ma. The collapse represented by the extensional system within the XMCC was operative during 120–106 Ma, and its main activity occurred about 116 Ma ago. These suggest that the XMCC experienced two extensional stages in its evolution, i.e., the syn-orogenic regional extension and post-orogenic collapse extension. 展开更多
关键词 Xiaoqinling metamorphic core complex (Xmcc) MULTISTAGE EXTENSION detachment fault COLLAPSE AGES
下载PDF
Extension of the Louzidian Metamorphic Core Complex and Development of Supradetachment Basins in Southern Chifeng,Inner Mongolia,China 被引量:19
2
作者 WANGXinshe ZHENGYadong JIAWen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期237-245,共9页
The Louzidian metamorphic core complex (LMCC) in southern Chifeng is located on the northern margin of the North China craton. Structural analyses of the LMCC and its extensional detachment system indicate that the LM... The Louzidian metamorphic core complex (LMCC) in southern Chifeng is located on the northern margin of the North China craton. Structural analyses of the LMCC and its extensional detachment system indicate that the LMCC experienced two-stage extension. The ductile regime experienced top-to-northeast shearing extension and the brittle detachment fault underwent top-down-outwards slipping. Between these two stages, a semi-ductile regime recorded the transition from ductile to brittle. The hanging wall of the detachment fault is similar to those classic supradetachment basins in western North America. Analyses of provenance and paleocurrent directions in the basins show that there were two filling stages. In the early stage, materials came from the southwest margin of the basin and the hanging wall of the detachment system and were transported from southwest to northeast; while in the late stage, deposits were derived from the footwall of the detachment fault and transported outwards to the two sides of the core complex. Since the filling period of the basins is from the late Jurassic to the late Cretaceous and it is coeval with the extension, the two filling stages reflect the two-stage history of the detachment fault. The large-scale late Jurassic underplating in the deep crust of the Chifeng area led to thickening and heating of the middle-upper crust and trigged the extension at depths and volcanism on the surface. In the early Cretaceous the upper plate of the detachment fault moved northeastwards and sediments were transported from southwest to northeast, while in the late Cretaceous the core complex was uplifted rapidly, the original basin was separated by the uplifted core, and lower-plate-derived debris was deposited in the adjacent upper-plate basins of the detachment fault. Evidentially, the development of the supradetachment basins were controlled by the extension and in turn the fillings in the basins recorded information of the extension, which has provided new evidence for kinematic interpretation of the Louzidian core complex. 展开更多
关键词 metamorphic core complex extension stage supradetachment basin Louzidian southern Chifeng
下载PDF
Application of General Shear Theory to the Study of Formation Mechanism of the Metamorphic Core Complex:A Case Study of Xiaoqinling in Central China 被引量:20
3
作者 ZHANG Jinjiang ZHENG Yadong LIU Shuwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第1期19-28,共10页
The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMCC)... The kinematic vorticity number and strain of the mylonitic zone related to the detachment fault increase from ESE to WNW along the moving direction of the upper plate of the Xiaoqinling metamorphic core complex (XMCC) and the geometry of quartz c-axis fabrics changes progressively from crossed girdles to single girdles in the same direction. Therefore, pure shear is dominant in the ESE part of the XMCC while simple shear becomes increasingly important towards WNW. However, the shear type does not change with the strain across the shear zone, thus the variation of shear type is of significance in indicating the formation mechanism. The granitic plutons within the XMCC came from the deep source and their emplacement was an active and forceful upwelling prior to the detachment faulting. The PTt path demonstrates that magmatism is an important cause for the formation of the XMCC. The formation mechanism of the XMCC is supposed to be active plutonism and passive detachment. Crustal thickening and magmatic doming caused necking extension with pure shear, and magmatic heating and doming resulted in detachment extension with simple shear and formed the XMCC. 展开更多
关键词 Xiaoqinling metamorphic core complex (Xmcc) formation mechanism shear type MAGMATISM PTt path
下载PDF
The Liaonan Metamorphic Core Complex: Constitution, Structure and Evolution 被引量:8
4
作者 LIU Junlai GUAN Huimei JI Mo CAO Shuyun HU Ling 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第4期502-513,共12页
The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, ... The Liaonan metamorphic core complex (mcc) has a three-layer structure and is constituted by five parts, i.e. a detachment fault zone, an allochthonous upper plate and an supradetachment basin above the fault zone, and highly metamorphosed rocks and intrusive rocks in the lower plate. The allochthonous upper plate is mainly of Neoproterozoic and Paleozoic rocks weakly deformed and metamorphosed in pre-Indosinan stage. Above these rocks is a small-scale supradetachment basin of Cretaceous sedimentary and volcanic rocks. The lower plate is dominated by Archean TTG gneisses with minor amount of supracrustal rocks. The Archean rocks are intruded by late Mesozoic synkinematic monzogranitic and granitic plutons. Different types of fault rocks, providing clues to the evolution of the detachment fault zone, are well-preserved in the fault zone, e.g. mylonitic gneiss, mylonites, brecciated mylonites, microbreccias and pseudotachylites. Lineations in lower plate granitic intrusions have consistent orientation that indicate uniform top-to-NW shearing along the main detachment fault zone. This also provides evidence for the synkinematic characteristics of the granitic plutons in the lower plate. Structural analysis of the different parts in the mcc and isotopic dating of plutonic rocks from the lower plate and mylonitic rocks from detachment fault zone suggest that exhumation of the mcc started with regional crustal extension due to crustal block rotation and tangential shearing. The extension triggered magma formation, upwelling and emplacement. This event ended with appearance of pseudotachylite and fault gauges formed at the uppermost crustal level. U-Pb dating of single zircon grains from granitic rocks in the lower plate gives an age of 130±2.5 Ma, and biotite grains from the main detachment fault zone have ^40Ar-^39Ar ages of 108-119 Ma. Several aspects may provide constraints for the exhumation of the Liaonan mcc. These include regional extensional setting, cover/basement contact, temporal and spatial coupling of extension and magmatism, basin development and evolution of fault tectonites along detachment fault zone. We propose that the exhumation of the Liaonan mcc resulted from regional extension and thinning of crust or lithosphere in eastern North China, and accompanied with synkinematic intrusion of granitic plutons, formation of detachment fault zone, uplifting and exhumation of lower-plate rocks, and appearance of supradetachment basin. 展开更多
关键词 Liaonan metamorphic core complex crustal and lithosphere thinning crustal extension late Mesozoic
下载PDF
Metamorphic Core Complexes and Its Significance in the Continental Crustal Evolution 被引量:4
5
作者 Song Honglin Wei BizeDepartment of Geology , China University of Geosciences , Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1990年第1期115-125,136,共12页
Metamorphic core complexes are a basic structural pattern related to extensional tectonics. Several characteristics of different scales of metamorphic core complexes in the Fangshan and Yunmengshan (Beijing) , Zhongti... Metamorphic core complexes are a basic structural pattern related to extensional tectonics. Several characteristics of different scales of metamorphic core complexes in the Fangshan and Yunmengshan (Beijing) , Zhongtiaoshan (Shanxi) , and Dengfong (Henan) are examined. A three-layer model for metam orphic core complexes is suggested . The conclusion is that metam orphic core complexes are the result of multiphase intracontinental crustal extensions and are an important tectonic pattern. which exposes the basement metam orphic rocks to the ground surface in the intracontinental cover . 展开更多
关键词 metamorphic core complex denudational fault system extensional tectonics
下载PDF
Numerical modeling of metamorphic core complex formation:Implications for the destruction of the North China Craton 被引量:2
6
作者 ZiQi Ma Gang Lu +1 位作者 JianFeng Yang Liang Zhao 《Earth and Planetary Physics》 EI CSCD 2022年第2期191-203,共13页
Widespread magmatism, metamorphic core complexes(MCCs), and significant lithospheric thinning occurred during the Mesozoic in the North China Craton(NCC). It has been suggested that the coeval exhumation of MCCs with ... Widespread magmatism, metamorphic core complexes(MCCs), and significant lithospheric thinning occurred during the Mesozoic in the North China Craton(NCC). It has been suggested that the coeval exhumation of MCCs with uniform northwest-southeast shear senses and magmatism probably resulted from a decratonization event during the retreat of the paleo-Pacific Plate. Here we used two-dimensional finite element thermomechanical numerical models to investigate critical parameters controlling the formation of MCCs under far-field extensional stress. We observed three end-member deformation modes: the MCC mode, the symmetric-dome mode, and the pure-shear mode. The MCC mode requires a Moho temperature of ≥700 ℃ and an extensional strain rate of ≥5 × 10^(-16)s^(-1), implying that the lithosphere had already thinned when the MCC was formed in the Mesozoic. Considering that the widespread MCCs have the same northwest-southeast extension direction in the NCC, we suggest that the MCCs are surface expressions of both large-scale extension and craton destruction and that rollback of the paleo-Pacific slab might be the common driving force. 展开更多
关键词 metamorphic core complex North China Craton numerical modeling EXTENSION
下载PDF
FEM simulation of formation of metamorphic core complex with ANSYS software 被引量:2
7
作者 Guoqing YIN Wei JIN Xianli YANG 《Global Geology》 2007年第1期110-112,共3页
This study utilizes ANSYS to establish FEM's model of metamorphic core complex,and used thermal-structure analysis to simulate metamorphic core complex's temperature field and stress field.The metamorphic core... This study utilizes ANSYS to establish FEM's model of metamorphic core complex,and used thermal-structure analysis to simulate metamorphic core complex's temperature field and stress field.The metamorphic core complex formation mechanism is discussed.The simulation results show that the temperature field change appearing as the earth surface's temperature is the lowest,and the temperature of metamorphic core complex's nucleus is the highest.The temperature field is higher along with depth increase,and the stress field change appearing as the biggest stress occurs in the nucleus.The next stress field occurs at the top of the cover. 展开更多
关键词 数字模拟 变质岩络合物 场致发射显微镜模式 有限元软件
下载PDF
Structural Analysis of Jianglang Metamorphic Core Complex in Western Margin of yangtze Crston,Sichuan Province
8
作者 Song Honglin Fu Zhaoren Yan DanpingDepartment of Geology and Mineral Resources , China University of Geosciences , Beijing 100083 《Journal of Earth Science》 SCIE CAS CSCD 1995年第2期13-17,共5页
There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this b... There is a belt of metamorphic core complexes in the western margin of the Yangtze craton . The geological setting of the belt is similar to that of the Cordilleran metamorphic core complexes . A typical one in this belt is the Jianglang metamorphic core complex , which has a configuration consisting of three layers : a core complex consisting of Mesoproterozoic schist sequence . a ductile middle slab consisting of Paleozoic meta- sedimentary -basalt characterized by the development of ' folding layer' and an upper cover consisting of Xikang Group which has suffered both buckling and flattening . A detachment fault developed along the contact boundary between the cover and basement causes the omission of Upper Sinian and Cambrian at the base of cover . A lot of normal ductile shear zones developed in the cover causes the thinning of it . All the features show that the early extension results in the thinning of crust , but the formation of the dome and exposure of basement rocks may be the results of superimposing of the E-W directed contraction and the following southward thrusting during Indosinian to Yanshanian orogeny . Syntectonic plutonism and pervasive thermo - metamor-phism in the cover suggest that the thermal uplift also causes the uplift of the MCC . 展开更多
关键词 metamorphic core complex extensional structure western margin of Yangtzecraton thermal uplift.
下载PDF
Late Caledonian Orogenic Extensional Deformation and Metamorphic Core Complexes in Xuefengshan Area,Southern China
9
《Journal of Earth Science》 SCIE CAS CSCD 1997年第2期9-14,共6页
LateCaledonianOrogenicExtensionalDeformationandMetamorphicCoreComplexesinXuefengshanArea,SouthernChina*HouGu... LateCaledonianOrogenicExtensionalDeformationandMetamorphicCoreComplexesinXuefengshanArea,SouthernChina*HouGuangjiuSuoShutianF... 展开更多
关键词 core complexES metamorphic and Xuefengshan Area Southern CALEDONIAN
下载PDF
内蒙古大青山-盘羊山晚中生代-早新生代构造事件及其对华北北缘构造演化的启示
10
作者 张进江 郑剑磊 +3 位作者 王海滨 郭磊 刘江 戚国伟 《地学前缘》 EI CAS CSCD 北大核心 2024年第1期127-141,共15页
内蒙古大青山和盘羊山位于华北克拉通北缘,其复杂的地质构造对华北克拉通北部中—新生代构造演化具有重要的指示作用。大青山以北的盘羊山逆冲体系,形成于晚二叠世至早三叠世古亚洲洋的闭合,晚侏罗世可能受蒙古-鄂霍次克洋闭合的影响而... 内蒙古大青山和盘羊山位于华北克拉通北缘,其复杂的地质构造对华北克拉通北部中—新生代构造演化具有重要的指示作用。大青山以北的盘羊山逆冲体系,形成于晚二叠世至早三叠世古亚洲洋的闭合,晚侏罗世可能受蒙古-鄂霍次克洋闭合的影响而重新活动。大青山地区发育4期中—新生代变形构造,从老至新依次是:SE-NW向伸展形成的呼和浩特变质核杂岩、NW向逆冲的大青山逆冲体系、以不变形花岗岩为核心的构造穹窿、大青山山前断裂及高角度正断层。发生于约142~132 Ma的SE-NW向伸展,形成于造山增厚地壳的重力垮塌,并形成呼和浩特变质核杂岩和相关的拆离体系。大青山逆冲体系形成于约130~120 Ma,代表造山过程中地壳荷载与板块汇聚的抗衡导致的构造反转,另一可能是古太平洋俯冲的远程效应。自约120 Ma以来,大青山处于一个构造-热松弛期,导致该区约120~90 Ma的冷却事件被广泛记录,并形成以不变形花岗岩(约114 Ma)为核心的穹窿构造;这些事件可能与华北克拉通的峰期破坏相关。大青山山前断裂和相关的高角度正断层开始于始新世,可能是印度-欧亚大陆碰撞和太平洋板块运动方向改变的远程效应所致。古亚洲洋和蒙古-鄂霍次克洋的闭合导致华北克拉通北缘地壳增厚,引发早白垩世造山晚期的垮塌和伸展,形成呼和浩特变质核杂岩。自120 Ma开始,大青山开始受华北克拉通破坏的影响,并形成后造山伸展。新生代,大青山受新特提斯和太平洋构造域的远程影响。 展开更多
关键词 中生代 新生代 逆冲 变质核杂岩(mcc) 构造转换 大青山 华北克拉通北缘
下载PDF
胶东地区玲珑双向变质核杂岩的均衡隆升:运动学涡度的指示
11
作者 吴晓冬 朱光 《地质学报》 EI CAS CSCD 北大核心 2024年第1期31-49,共19页
在胶东半岛西北部,围绕着玲珑岩基所发育的早白垩世伸展构造,属于独特的双向变质核杂岩。这一变质核杂岩的东、西边界上,分别发育了倾斜相背的招平与焦家伸展拆离剪切带。双向变质核杂岩的剥露是否也有均衡隆升的贡献,一直没有明确的认... 在胶东半岛西北部,围绕着玲珑岩基所发育的早白垩世伸展构造,属于独特的双向变质核杂岩。这一变质核杂岩的东、西边界上,分别发育了倾斜相背的招平与焦家伸展拆离剪切带。双向变质核杂岩的剥露是否也有均衡隆升的贡献,一直没有明确的认识。本次工作以采自这两条边界拆离剪切带不同部位的糜棱岩样品为分析对象,分别应用刚性残斑长短轴比值法(具体又分别使用了Wallis投图法和刚性颗粒网格法)和石英c轴组构与主应变比值法对同一样品进行了运动学涡度测量。对于招平拆离剪切带,应用刚性残斑长短轴比值法获得的涡度值为0.57~0.73,而应用石英c轴组构与主应变比值法获得的涡度值为0.80~0.93。对于焦家剪切带,应用刚性残斑长短轴比值法获得的涡度值为0.58~0.74,而应用石英c轴组构与主应变比值法获得的涡度值为0.79~0.93。对于剪切带的同一样品,这两种测量方法给出的结果明显不同。应用刚性残斑长短轴比值法数据所获得这两条剪切带的减薄率,也明显高于应用石英c轴组构与主应变比值法数据的计算结果。理论分析与实例表明,刚性残斑长短轴比值法所获得的涡度值代表了剪切带的早期变形,而石英c轴组构与主应变比值法所得结果指示了晚期变形。由此表明,玲珑双向变质核杂岩边界拆离剪切带演化中,伴随着纯剪组分的明显降低,指示了剪切带产状的变陡,为均衡隆升的结果。均衡隆升发生在核杂岩演化的晚阶段,是早白垩世郭家岭期同构造花岗闪长岩侵位的响应。本文结果指示,双向与不对称变质核杂岩具有相似的演化规律,都经历过晚阶段均衡隆升,对中—下地壳的剥露具有重要的贡献。 展开更多
关键词 伸展拆离剪切带 运动学涡度 一般剪切 均衡隆升 玲珑双向变质核杂岩
下载PDF
New Findings in High-Pressure and Ultrahigh-Pressure Metamorphic Belt of Tongbaishan-Dabieshan Regions, Central China
12
作者 You Zhendong Zhong Zengqiu Suo Shutian Zhang Zeming Wei Bize Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China 《Journal of Earth Science》 SCIE CAS CSCD 2000年第3期34-39,共6页
The Tongbai Dabieshan high pressure (HP) and ultrahigh pressure (UHP) belt is sandwiched between the Yangtze and the Sinokorean cratons. It connects the Qinling orogenic belt in the west and links toward the east... The Tongbai Dabieshan high pressure (HP) and ultrahigh pressure (UHP) belt is sandwiched between the Yangtze and the Sinokorean cratons. It connects the Qinling orogenic belt in the west and links toward the east to the Sulu ultrahigh pressure (UHP) belt. At present there is a consensus that the UHP metamorphic rocks are the products of the oblique collision between the Yangtze and Sinokorean cratons during the Triassic. However, there is still a lot of controversies about the formation and exhumation of the HP and UHP metamorphic belts. The present research work on the composition and the structural geometry and kinetics of the HP and UHP metamorphic belt has shown the following new results: (1) The overall structural geometry pattern of Dabieshan is similar to the metamorphic core complex developed in the western North America; (2) The discoveries of HP and UHP metamorphic rocks in the north of Dabieshan indicate that the significance of Shuihou Wuhe fault should be re evaluated; (3) A series of micro structural evidence, including the newly found retrograde granulite facies assemblages in the garnet pyroxenites, substantiate the extensional processes following the collision event; (4) The discovery of partial melting phenomena in the UHP metamorphic belts illuminates the relationship between the HP and UHP metamorphic rocks and their associated granite gneiss. All of these new findings will greatly improve our understanding of the formation and exhumation of the high pressure and ultrahigh pressure metamorphic belts. 展开更多
关键词 metamorphic core complex garnet pyroxenite retrogressive microstructure flecky gneiss partial melting.
下载PDF
岩浆核杂岩和变质核杂岩特征对比及控矿实例--南秦岭牛山-凤凰山变质核杂岩和牛山北岩浆核杂岩构造群落及控矿模式
13
作者 杨兴科 何虎军 +3 位作者 晁会霞 朱昊磊 韩珂 王北颖 《地质通报》 CAS CSCD 北大核心 2023年第4期520-539,共20页
以南秦岭牛山-凤凰山变质核杂岩和牛山北岩浆核杂岩为例,通过核杂岩的构造群落、变质程度、岩浆侵位与变形时代、构造层次与演化、控矿特征与控矿构造-蚀变岩相填图及测年研究,对比2类核杂岩的特征及其控矿作用。结果表明,2类核杂岩有... 以南秦岭牛山-凤凰山变质核杂岩和牛山北岩浆核杂岩为例,通过核杂岩的构造群落、变质程度、岩浆侵位与变形时代、构造层次与演化、控矿特征与控矿构造-蚀变岩相填图及测年研究,对比2类核杂岩的特征及其控矿作用。结果表明,2类核杂岩有相似的结构样式,但构造群落和演化差别较大。牛山-凤凰山变质核杂岩核部为新元古代武当岩群和耀岭河岩组中深变质岩,其中可见新元古代石英闪长岩和加里东期辉石岩-辉绿岩株,说明是在新元古代或加里东期形成的。核杂岩与外围震旦系-泥盆系浅变质岩间由剥离断层及韧性剪切带分割。志留系梅子垭岩组为浅变质强变形的岩片组合,发育多层次韧性剪切、固态流变、滑脱-逆冲-走滑变形3期新生面理及其置换。而牛山北岩浆核杂岩核部和外围是浅变质岩,在核部和外围填图、测试时发现新元古代、早古生代、三叠纪、侏罗纪4期侵入岩,与岩浆核杂岩相关的有三叠纪-早侏罗世二长花岗岩株和晚侏罗世花岗岩脉2期侵入岩。研究发现,与岩浆核杂岩伴随的岩浆侵位、韧性剪切变形与热变质增温-变斑晶加大-自然金沿S 2面理分布-金矿化热液蚀变等的时代均集中在晚三叠世-侏罗纪,指示了时代较新的陆内造山期岩浆核杂岩的脆-韧性剪切变形-立交桥式岩浆-热力垂向增生-热液蚀变成矿时空关联特点及深部找矿方向。 展开更多
关键词 岩浆核杂岩 变质核杂岩 构造群落 脆-韧性剪切带 控矿构造模式 金矿成矿规律 南秦岭
下载PDF
Genesis of the Hongzhen metamorphic core complex and its tectonic implications 被引量:10
14
作者 ZHU Guang XIE ChengLong +3 位作者 XIANG BiWei HU ZhaoQi WANG YongSheng LI Xing 《Science China Earth Sciences》 SCIE EI CAS 2007年第5期649-659,共11页
The Hongzhen metamorphic core complex is situated in the Yangtze plate to the east of the Dabie oro- genic belt. Its ductile detachment zone in the foot wall overprints on the metamorphic complex of the Proterozoic Do... The Hongzhen metamorphic core complex is situated in the Yangtze plate to the east of the Dabie oro- genic belt. Its ductile detachment zone in the foot wall overprints on the metamorphic complex of the Proterozoic Dongling Group. The present profile of the ductile shear zone with consistent SW-dipping mineral elongation lineation shows antiform and reversed S-shape from northeast to southwest respectively. Exposure structures, microstructures and quartz C-axis fabric all indicate top-to-SW movement for the ductile shear zone. Recrystallisation types of quartz and feldspar in the mylonites demonstrate that the shear zone was developed under the amphibolite facies condition and at mid-crust levels. The metamorphic core complex formed in the Early Cretaceous with a muscovite plateau age of 124.8±1.2 Ma. Regional NE-SW extension along a SW-dipping, gentle detachment zone was responsible for formation of the core complex. Intrusion of the Hongzhen granite with a biotite plateau age of 124.8±1.2 Ma rendered the ductile shear zone curved, uplifted and final localization of the core complex. The Hongzhen metamorphic core complex suggests that the Early Cretaceous magma- tism in this region took place under the condition of regional extension and the eastern Yangtze plate also experienced lithospheric thinning. 展开更多
关键词 YANGTZE plate Hongzhen metamorphic core complex DUCTILE shear zone LITHOSPHERIC THINNING
原文传递
The Wulian Metamorphic Core Complex: A Newly Discovered Metamorphic Core Complex along the Sulu Orogenic Belt, Eastern China 被引量:13
15
作者 倪金龙 刘俊来 +3 位作者 唐小玲 杨海波 夏增明 郭全军 《Journal of Earth Science》 SCIE CAS CSCD 2013年第3期297-313,共17页
Combined with field studies, microscopic observations, and EBSD fabric analysis, we defined a possible Early Cretaceous metamorphic core complex (MCC) in the Wulian area along the Sulu orogenic belt in eastern China... Combined with field studies, microscopic observations, and EBSD fabric analysis, we defined a possible Early Cretaceous metamorphic core complex (MCC) in the Wulian area along the Sulu orogenic belt in eastern China. The MCC is of typical Cordilleran type with five elements: (1) a master detachment fault and sheared rocks beneath it, a lower plate of crystalline rockswith (2) middle crust metamorphic rocks, (3) syn-kinematic plutons, (4) an upper plate of weakly deformed Proterozoic metamorphic rocks, and (5) Cretaceous volcanic-sedimentary rocks in the supradetachment basin. Some postkinematic incursions cut across the master detachment fault zone and two plates. In the upper plate, Zhucheng (诸城) Basin basement consists of the Proterozoic Fenzishan (粉子山) Group, Jinning period granite (762–834 Ma). The s u pr a de tac hme nt ba sin a bo ve the Proterozoic rocks is filled with the Early Cretaceous Laiyang (莱阳) (~135–125 Ma) and Qingshan (青山) groups (120–105 Ma), as wellas the Late Cretaceous Wangshi (王氏) Group (85–65 Ma). The detachment fault zone is developed at the base and margin of the superposed basin. Pseudotachylite and micro breccia layers located at the top of the detachment fault. Stretching lineation and foliation are well developed in the ductile shear belt in the detachment faults. The stretching lineation indicates a transport direction of nearly east to west on the whole, while the foliations trend WNW, WSW, and SE. Protomylonite, mylonite, and ultramylonite are universally developed in the faults, transitioning to mylonitic gneiss, and finally to gneiss downward. Microstructure and quartz preferred orientation show that the mylonites formed at high greenschist facies to low greenschist facies as a whole. The footwall metamorphic rock series of the Wulian MCC are chiefly UHP (ultrahigh pressure) metamorphic rocks. Syntectonic rocks developed simultaneously with the Wulian MCC detachment and extension. Geological research has demonstrated that the MCC is associated with small-scale intrusive rocks developing in the vicinity of the detachment faults, for instance, dike. Geochronology results indicate that the denudation of the Wulian MCC occurred at about 135–122 Ma. Its development and exhumation was irrelevant to the Sulu UHP metamorphism zone rapid exhumation during Triassic Period but resulted from the crustal extension of North China Craton and adjacent area. 展开更多
关键词 metamorphic core complex Late Mesozoic North China Craton crustal extension Sulu orogenic belt.
原文传递
Deformation characteristics and formation mechanism of the Yunmengshan metamorphic core complex 被引量:10
16
作者 Yin Chen Guang Zhu +1 位作者 Dazhi Jiang Shaoze Lin 《Chinese Science Bulletin》 SCIE EI CAS 2014年第20期2419-2438,共20页
The Yunmengshan metamorphic core complex in the middle part of the Yanshan Fold and Thrust Belt records crust extension processes of the eastern North China Craton during its peak destruction.Development of the metamo... The Yunmengshan metamorphic core complex in the middle part of the Yanshan Fold and Thrust Belt records crust extension processes of the eastern North China Craton during its peak destruction.Development of the metamorphic core complex was controlled by the generally NNE-striking Dashuiyu Shear Zone.The shear zone dips SE and becomes shallower NE-wards,leading to exposures of a ductile shear zone in the southern and middle parts and brittle faults in the northern part.Exposure structures,microstructures,and quartz C-axis fabrics indicate that the ductile shear zone belongs to an extensional shear zone with a top-to-the-SE shear sense.Deformation temperatures of 300–520°C suggest a midcrustal origin for the ductile shear zone.A ductile deformation belt in the footwall of the shear zone is only as wide as 1–3 km,indicating no widespread mid-crustal ductile flow in the region during the deformation.Zircon U–Pb dating of dykes and plutons as well as hornblende and biotite40Ar/39Ar dating demonstrate that the metamorphic core complex originated at 135 Ma and experienced intense shearing of the Dashuiyu Shear Zone,development of the supradetachment basins,and synkinematic intrusion during 135–125 Ma.The metamorphic core complex was subjected to rapid exhumation during 125–114 Ma when the Dashuiyu Shear Zone suffered continuous activity and passive doming.The shear zone and its hanging wall were cut or replaced by a series of brittle faults when they wereuplifted to a brittle regime,showing that exhumation took place in continuous extensional activities.The metamorphic core complex turned into slow exhumation in an extensional regime in the following latest Early Cretaceous.The evolution history suggests that the Yunmengshan metamorphic core complex was developed by the rolling-hinge model,a common formation mechanism for intraplate metamorphic core complexes in the North China Craton,under the continuous NW–SE extension during the Early Cretaceous(135–100 Ma). 展开更多
关键词 变质核杂岩 变形温度 云蒙山 机制 锆石U-PB年龄 韧性剪切带 特征和 折返过程
原文传递
Structure, evolution and regional tectonic implications of the Queshan metamorphic core complex in eastern Jiaodong Peninsula of China 被引量:17
17
作者 XIA ZengMing LIU JunLai +3 位作者 NI JinLong ZHANG TingTing SHI XingMing WU Yun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第5期997-1013,共17页
The Queshan MCC is an important example of a crustal extensional structure in the eastern Jiaodong Peninsula along the southeastern margin of the NCC in the Early Cretaceous. The MCC is a typical Cordilleran-type core... The Queshan MCC is an important example of a crustal extensional structure in the eastern Jiaodong Peninsula along the southeastern margin of the NCC in the Early Cretaceous. The MCC is a typical Cordilleran-type core complex with a three-layered structure:(1) the upper plate is constituted by the Cretaceous supradetachment basin and Paleoproterozoic basement;(2) the lower plate comprises the Neoarchean high-grade metamorphic complexes and late Mesozoic granitic intrusions; and(3) the two plates are separated by a master detachment fault. A series of late NEN-oriented brittle faults superimposed on and destructed the early MCC. Petrology, geometry, kinematics, macro- and micro-structures and quartz c-axis fabrics imply that the MCC has a progressive exhumation history from middle-lower to subsurface level(via middle-upper crustal level) under the nearly WNW-ESE regional extensional regime. We present structural and geochronological evidence to constrain the exhumation of the Queshan MCC from ca. 135 to 113 Ma. Based on the comprehensive analysis of the different patterns of extensional structures in the Jiaodong and Liaodong Peninsula, we have defined the Jiao-Liao Early Cretaceou extensional province and further divided the crustal extension of it into two stages: the first stage was the intense flow of the middle-lower crust and the second stage was the extension of the middle-upper crust. Combining the tectonic setting, the lithosphere thinning in the Jiao-Liao Early Cretaceous extensional province can be considered a typical model for the response of crust-mantle detachment faulting under regional extension in East Asia. 展开更多
关键词 Jiaodong 半岛 Queshan 变形核心建筑群 分开差错地区 Jiao 辽河早白垩纪 extensional 诺思中国 Craton
原文传递
Determining the key conditions for the formation of metamorphic core complexes by geodynamic modeling and insights into the destruction of North China Craton 被引量:2
18
作者 LU Gang ZHAO Liang +2 位作者 ZHENG TianYu WANG Kun YANG JianFeng 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第9期1873-1884,共12页
Metamorphic core complex(MCC) is characterized by the exhumation of lower crust over a large-scale detachment fault, providing natural records for tectonic extension. MCCs are widely identified in the North China Crat... Metamorphic core complex(MCC) is characterized by the exhumation of lower crust over a large-scale detachment fault, providing natural records for tectonic extension. MCCs are widely identified in the North China Craton(NCC), which have been intensively studied on their structural and geological characteristics. Yet, the condition for the formation of MCCs and their link with NCC destruction are still in debate. In this study, we perform numerical simulations to investigate MCC formation under extension, with a focus on the effect of crustal rheologies. Results indicate that three end-member modes of deformation may occur: the metamorphic core complex mode, the detachment fault-uplifting mode and the pure shear mode. Weaker lower crust and stronger upper crust may promote the formation of MCC. In contrast, stronger lower crust(>1.3×1021 Pa s) may prohibit the exhumation of lower crust(detachment fault-uplifting mode), while weaker upper crust(<7.8×1021 Pa s) may fail to develop detachment faults(pure shear mode). Given that cratons typically have a strong crust, we suggest that the lower crust of NCC was weakened prior to extension, which promoted the formation of MCC in a later stage under the back-arc extension. 展开更多
关键词 变质核杂岩 华北克拉通 动力学建模 中国 拆离断层 剪切模式 下地壳 mcc
原文传递
Deformation characteristics and genesis of the Waziyu metamorphic core complex in western Liaoning of China 被引量:4
19
作者 ZHANG BiLong ZHU Guang +3 位作者 CHEN Yin PIAO XueFeng JU LinXue WANG HaoQian 《Science China Earth Sciences》 SCIE EI CAS 2012年第11期1764-1781,共18页
The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxi... The Waziyu metamorphic core complex is situated at the eastern end of the Yanshan tectonic belt.The NNE-striking detachment ductile shear zone in the core complex lies between the Archean metamorphic basement and Fuxin-Yixian rift basin,dips NW gently,and shows corrugation folds.Exposure structures,microstructures,and quartz C-axis fabrics all indicate top-to-the WNW sense of shear,i.e.,ca.285°,for the shear zone.Estimates of the deformation temperatures(ca.550-250°C) demonstrate its mid-crustal origination and progressive deformation from deep to shallow levels.The northern segment of the shear zone shows relatively weak exhumation with exposures of low-temperature mylonites whereas its middle and southern segments have more intense uplifting with exposures of high-temperature mylonites.Biotite and muscovite 40 Ar/39 Ar ages,U-Pb dating results of zircon from dikes and plutons as well as formation ages of the supra-detachment basin all suggest the formation time of 135-100 Ma for the core complex.The formation was also associated with syntectonic emplacement of the Early Cretaceous Shishan pluton.The western margin of the core complex was truncated by the Sunjiawan-Shaohuyingzi brittle normal fault when it uplifted to shallow crust levels,and finally exhumed to near-surface levels.The core complex was developed by the rolling-hinge model under WNW-ESE extension during the Early Cretaceous peak destruction of the North China Craton.Ductile flow did not appear in the lower plate,therefore not supporting the low-crust gravitational collapse. 展开更多
关键词 变质核杂岩 变形特征 中国 韧性剪切带 锆石U-PB定年 成因 辽西 地壳浅部
原文传递
Syn-deformation P-T paths of Xiaoqinling metamorphic core complex 被引量:3
20
作者 Shuwen Liu Jinjiang Zhang Yadong Zheng 《Chinese Science Bulletin》 SCIE EI CAS 1998年第22期1927-1934,共8页
The \%P_T\% paths of the Xiaoqinling metamorphic core complex (XMCC) have been investigated with the Gibbs method by researching the compositional changing of zoned epidotes which formed during syn_deformation metamor... The \%P_T\% paths of the Xiaoqinling metamorphic core complex (XMCC) have been investigated with the Gibbs method by researching the compositional changing of zoned epidotes which formed during syn_deformation metamorphism. These \%P_T\% paths indicate that the XMCC had experienced the following thermodynamics processes: firstly, near isobaric falling slightly in temperature in lower crust; secondly, fast decompression and rising in temperature during extensional uplifting to middle crust level; and finally, isobaric falling in temperature in middle crust. The upwelling and emplacement of the deep magma may be a major factor during the uplifting processes of the metamorphic core complex. 展开更多
关键词 zoned epidotes Gibbs method \%P_T\% PATHS metamorphic core complex Xiaoqinling.
全文增补中
上一页 1 2 12 下一页 到第
使用帮助 返回顶部