期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Layered metastructure containing freely-designed local resonators for wave attenuation
1
作者 Yu Li Huguang He +3 位作者 Jiang Feng Hailong Chen Fengnian Jin Hualin Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr... Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap. 展开更多
关键词 Layered metastructure Local resonator Wave attenuation
下载PDF
Bandgap formation and low-frequency structural vibration suppression for stiffened plate-type metastructure with general boundary conditions
2
作者 Tian ZHAO Zhichun YANG +1 位作者 Yanlong XU Wei TIAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期210-228,共19页
Metastructures with unique mechanical properties have shown attractive potential application in vibration and noise reduction.Typically,most of the metastructures deal with the vibration bandgap properties of infinite... Metastructures with unique mechanical properties have shown attractive potential application in vibration and noise reduction.Typically,most of the metastructures deal with the vibration bandgap properties of infinite structures without considering specific boundary condition and dynamic behaviors,which cannot be directly applied to the engineering structures.In this research,we design a Stiffened Plate-type Metastructure(SPM)composed of a plate with periodic stiffeners and cantilever beam-type resonators subjected to general boundary conditions for low-frequency vibration suppression.The effects of boundary conditions and the number and orientation of the stiffeners on Locally Resonant(LR)type bandgap properties in SPM are further investigated.An analytical modeling framework is developed to predict the bandgap formations and vibration behaviors of SPMs in finite-size configuration.The governing equations of the SPM reinforced by various arrangements of stiffeners are derived based on the first-order shear deformation theory and Hamilton’s principle,and a Fourier series combined with auxiliary functions is employed to satisfy the arbitrary boundary conditions.Finite element analysis and experimental investigations of vibration behaviors for the SPM are carried out to validate the accuracy and reliability of the present analytical model.For practical designs of the SPMs with specific boundary conditions,it is found that there exist optimal numbers of stiffeners and resonators which can produce the significant LR-type bandgap behaviors.Furthermore,various arrangements of stiffeners and resonators are explored for different boundary conditions by breaking the requirement of spatially periodicity.It is shown that for the designed SPM,the vibration modes of its host structure should be considered to widen the frequency range in which the resonators transfer and store energy,and hence improve the performance of low-frequency vibration suppression.The present work can provide a significant theoretical guidance for the engineering application of metamaterial stiffened structures。 展开更多
关键词 Bandgap Locally resonant metastructure Stiffened plate Vibration suppression
原文传递
3D printed labyrinth multiresonant composite metastructure for broadband and strong microwave absorption
3
作者 DUAN YuBing LIANG QingXuan +3 位作者 YANG Zhen WANG Xin LIU Pan LI DiChen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第12期3574-3584,共11页
Microwave absorbers(MAs)with broadband and strong microwave absorption capacities are urgently required to meet the demands of complex electromagnetic(EM)environments.Herein,a novel labyrinth multiresonant metastructu... Microwave absorbers(MAs)with broadband and strong microwave absorption capacities are urgently required to meet the demands of complex electromagnetic(EM)environments.Herein,a novel labyrinth multiresonant metastructure composed of a polyether-ether-ketone/flaky carbonyl iron(PEEK/CIP)magnetic composite was proposed and fabricated via 3D printing technology.A complex multiresonant cavity design was introduced,and the resonant loss area was significantly improved.Both broadband and high-efficiency microwave absorption performances were achieved.The multilayer labyrinth multiresonant metastructure was designed with gradient impedance.The effects of structural parameters on the absorbing properties were investigated and optimized.Experiments and simulations demonstrated the effectiveness of the design strategy.The designed metastructure with a 10 mm thickness exhibited a-10 dB absorption bandwidth at a frequency of 3.78–40 GHz and an absorption bandwidth below-15 dB at 7.5–36.5 GHz.Moreover,an excellent wide-angle absorption performance was observed for different polarization states,including transverse electric(TE)and transverse magnetic(TM)modes.The combination of a complex multiresonant metastructure design and 3D printing fabrication provides a facile route to considerably extend the absorption bandwidth and strength of electromagnetic absorbers.This work is expected to provide a promising strategy for further enhancing microwave absorption performance,and the designed metastructure possesses great application potential in stealth and electromagnetic compatibility technologies. 展开更多
关键词 labyrinth metastructure multiresonant magnetic composite materials broadband and strong absorption 3D printing
原文传递
Mechanics and Wave Propagation Characterization of Chiral S-Shaped Auxetic Metastructure
4
作者 Qingsong Zhang Wenjie Hong +4 位作者 Jianfei Xu Yuhang Zhang Suhang Ding Wenwang Wu Re Xia 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第4期571-586,共16页
Auxetic metastructures have attracted tremendous attention because of their robust multifunctional properties and promising potential industrial applications.This paper studies the in-plane mechanical behaviors of a c... Auxetic metastructures have attracted tremendous attention because of their robust multifunctional properties and promising potential industrial applications.This paper studies the in-plane mechanical behaviors of a chiral S-shaped metastructure subjected to tensile loading in both X-direction and Y-direction and wave propagation properties using the finite element(FE)method.The relationships between structural parameters and elastic behaviors are also discussed.The results indicate that the orientation of chiral S-shaped metastructure under tensile loading in the X-direction exhibits higher auxeticity and stiffness.Then,the band structures and the edge modes of each band gap of the chiral S-shaped metastructure are explored,and the relations between band gap properties and structural parameters are also systematically analyzed.Moreover,we explore the wave mitigation of the chiral S-shaped metastructures by regulating the structural parameters.Finally,the transmission properties of the finite chiral S-shaped periodic metastructures are studied to confirm the results of band gap simulation.This study promotes the engineering application of vibration isolation of chiral structures based on the band gap theory. 展开更多
关键词 Auxetic metastructures Mechanical properties Band gaps Wave mitigation
原文传递
Heterogeneous Hyperedge Convolutional Network
5
作者 Yong Wu Binjun Wang Wei Li 《Computers, Materials & Continua》 SCIE EI 2020年第12期2277-2294,共18页
Graph convolutional networks(GCNs)have been developed as a general and powerful tool to handle various tasks related to graph data.However,current methods mainly consider homogeneous networks and ignore the rich seman... Graph convolutional networks(GCNs)have been developed as a general and powerful tool to handle various tasks related to graph data.However,current methods mainly consider homogeneous networks and ignore the rich semantics and multiple types of objects that are common in heterogeneous information networks(HINs).In this paper,we present a Heterogeneous Hyperedge Convolutional Network(HHCN),a novel graph convolutional network architecture that operates on HINs.Specifically,we extract the rich semantics by different metastructures and adopt hyperedge to model the interactions among metastructure-based neighbors.Due to the powerful information extraction capabilities of metastructure and hyperedge,HHCN has the flexibility to model the complex relationships in HINs by setting different combinations of metastructures and hyperedges.Moreover,a metastructure attention layer is also designed to allow each node to select the metastructures based on their importance and provide potential interpretability for graph analysis.As a result,HHCN can encode node features,metastructure-based semantics and hyperedge information simultaneously by aggregating features from metastructure-based neighbors in a hierarchical manner.We evaluate HHCN by applying it to the semi-supervised node classification task.Experimental results show that HHCN outperforms state-of-the-art graph embedding models and recently proposed graph convolutional network models. 展开更多
关键词 Graph convolutional networks heterogeneous information networks metastructure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部