期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Primary Study of the Variations of Vertical Radiation with the Beijing 325-m Meteorological Tower 被引量:2
1
作者 王跃思 胡波 刘广仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第2期172-180,共9页
The Beijing 325-m Meteorological Tower (325MT) is used to observe the vertical variation of solar radiation. Results of the experiments indicate that the automatic radiation monitoring system, including a sun tracker ... The Beijing 325-m Meteorological Tower (325MT) is used to observe the vertical variation of solar radiation. Results of the experiments indicate that the automatic radiation monitoring system, including a sun tracker and data collection system, works well and all the specifications meet WMO observation standards. The measurement data show that there is a significant radiation decrease from 320 m to the surface, where the difference is only about 30 W m-2 on light air-pollution days, while the maximum reaches about 110 W m-2 when heavy pollution appears near the ground. The global UV radiation decreases on heavy air-pollution days and under poor visibility conditions, and the difference between 300 m and 8 m is larger than on clear days. 展开更多
关键词 meteorological tower vertical solar radiation variation automatic sun tracker
下载PDF
Analysis of Boundary Layer Structure,Turbulence,and Flux Variations before and after the Passage of a Sea Breeze Front Using Meteorological Tower Data
2
作者 Ju LI Junxia DOU +5 位作者 Donald H. LENSCHOW Mingyu ZHOU Lihong MENG Xiaobin QIU Yubing PAN Jingjiang ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2023年第6期855-877,共23页
A detailed analysis of a sea breeze front(SBF)that penetrated inland in the Beijing–Tianjin–Hebei urban agglomeration of China was conducted.We focused on the boundary layer structure,turbulence intensity,and fluxes... A detailed analysis of a sea breeze front(SBF)that penetrated inland in the Beijing–Tianjin–Hebei urban agglomeration of China was conducted.We focused on the boundary layer structure,turbulence intensity,and fluxes before and after the SBF passed through two meteorological towers in the urban areas of Tianjin and Beijing,respectively.Significant changes in temperature,humidity,winds,CO_(2),and aerosol concentrations were observed as the SBF passed.Differences in these changes at the two towers mainly resulted from their distances from the ocean,boundary layer conditions,and background turbulences.As the SBF approached,a strong updraft appeared in the boundary layer,carrying near-surface aerosols aloft and forming the SBF head.This was followed by a broad downdraft,which destroyed the near-surface inversion layer and temporarily increased the surface air temperature at night.The feeder flow after the thermodynamic front was characterized by low-level jets horizontally,and downdrafts and occasional updrafts vertically.Turbulence increased significantly during the SBF’s passage,causing an increase in the standard deviation of wind components in speed.The increase in turbulence was more pronounced in a stable boundary layer compared to that in a convective boundary layer.The passage of the SBF generated more mechanical turbulences,as indicated by increased friction velocity and turbulent kinetic energy(TKE).The shear term in the TKE budget equation increased more significantly than the buoyancy term.The atmosphere shifted to a forced convective state after the SBF’s passage,with near isotropic turbulences and uniform mixing and diffusion of aerosols.Sensible heat fluxes(latent heat and CO_(2)fluxes)showed positive(negative)peaks after the SBF’s passage,primarily caused by horizontal and vertical transport of heat(water vapor and CO_(2))during its passage.This study enhances understanding of boundary layer changes,turbulences,and fluxes during the passage of SBFs over urban areas. 展开更多
关键词 sea breeze front boundary layer structure TURBULENCE FLUX meteorological tower
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部