Relying on CMPP (China Mobile Peer to Peer) protocol,we propose and design SMS (Short Message Service) gateway interface for early warning plan based on real-time meteorological database application,in order to form t...Relying on CMPP (China Mobile Peer to Peer) protocol,we propose and design SMS (Short Message Service) gateway interface for early warning plan based on real-time meteorological database application,in order to form the meteorological mobile internet service system which is 'One point connect,service the whole province' for short.Accessing interface system to each city's SMG (Short Message Gateway) through standard protocol,we establish the information transmitting channel of short message platform and mobile SMG to realize the store-forward and flow control of short message.In addition,the stable and dependable communication connect of interface system and mobile SMG should be ensure,and the connect could be reconstructed while encountering any error,as well as committing short message would be stopped due to interruption of connect.展开更多
Based on the needs of characteristic agricultural production for meteorological services in Huzhou City,we use C# programming language to develop the meteorological disaster monitoring and early warning platform for c...Based on the needs of characteristic agricultural production for meteorological services in Huzhou City,we use C# programming language to develop the meteorological disaster monitoring and early warning platform for characteristic agriculture in Huzhou City. This platform integrates the functions of meteorological and agricultural information monitoring,disaster identification and early warning,fine weather forecast product display,and data query and management,which effectively enhances the capacity of meteorological disaster monitoring and early warning for characteristic agriculture in Huzhou City,and provides strong technical support for the meteorological and agricultural departments in the agricultural meteorological services.展开更多
High temperature warning indicators play a pivotal role in meteorological departments,serving as crucial criteria for issuing warnings that guide both social production and daily life.Despite their importance,limited ...High temperature warning indicators play a pivotal role in meteorological departments,serving as crucial criteria for issuing warnings that guide both social production and daily life.Despite their importance,limited studies have explored the relationship between different global warming levels and changes in high temperature warning indicators.In this study,we analyze data from 2,419 meteorological stations over China and utilize the Coupled Model Intercomparison Project Phase 6(CMIP6)models to examine historical changes in high temperature warning indicators used by the China Meteorological Administration.We evaluate model performance and estimate future changes in these indicators using an annual cycle bias correction method.The results indicate that since 1961,the number of high temperature days(TX35d and TX40d)and length of season(TX40d and TX40l)with daily maximum temperature reaching or exceeding 35℃ and 40℃ have increased over China.The intensity of high temperatures(TXx)has strengthened and the geographical extent affected by high temperatures has expanded.In 2022,the occurrence of 40℃ high temperatures surges,with Eastern China experiencing a two-day increase in TX40d and an extended seasonal length in TX40l by over five days.While CMIP6 models have underestimated the high temperature indictors associated with 35℃ during historical periods,notable difference is not observed between the models and observations for TX40d and TX40l,given their rare occurrence.However,future projections,after bias correction,indicate that the increasing trends for 35℃ and 40℃ high temperature days and length of season become more pronounced than the raw projection,suggesting a more severe increase than that anticipated originally.As global warming intensifies,the high temperature days and length of season are projected to increase non-linearly,while the intensity of high temperatures is expected to increase linearly.For every 1℃ increase in global temperature,the intensity is projected to rise by approximately 1.4℃.The impact of high temperatures is expanding,with the major hotspot for China located in the eastern and northwestern regions.Under 5℃ global warming,certain regions in China may experience prolonged extreme high temperatures.For instance,40℃ high temperature days in areas like North China and the Yangtze River Basin could increase by about 32 d,and the length of season could extend by approximately 100 d.展开更多
文摘Relying on CMPP (China Mobile Peer to Peer) protocol,we propose and design SMS (Short Message Service) gateway interface for early warning plan based on real-time meteorological database application,in order to form the meteorological mobile internet service system which is 'One point connect,service the whole province' for short.Accessing interface system to each city's SMG (Short Message Gateway) through standard protocol,we establish the information transmitting channel of short message platform and mobile SMG to realize the store-forward and flow control of short message.In addition,the stable and dependable communication connect of interface system and mobile SMG should be ensure,and the connect could be reconstructed while encountering any error,as well as committing short message would be stopped due to interruption of connect.
基金Supported by Huzhou Science and Technology Program(2013GY06)Research Project of Huzhou Municipal Meteorological Bureau(hzqx201602)
文摘Based on the needs of characteristic agricultural production for meteorological services in Huzhou City,we use C# programming language to develop the meteorological disaster monitoring and early warning platform for characteristic agriculture in Huzhou City. This platform integrates the functions of meteorological and agricultural information monitoring,disaster identification and early warning,fine weather forecast product display,and data query and management,which effectively enhances the capacity of meteorological disaster monitoring and early warning for characteristic agriculture in Huzhou City,and provides strong technical support for the meteorological and agricultural departments in the agricultural meteorological services.
基金supported by the National Natural Science Foundation of China(Grant Nos.42025503&U2342228)the Key Innovation Team of China Meteorological Administration Climate Change Detection and Response(Grant No.CMA2022ZD03)。
文摘High temperature warning indicators play a pivotal role in meteorological departments,serving as crucial criteria for issuing warnings that guide both social production and daily life.Despite their importance,limited studies have explored the relationship between different global warming levels and changes in high temperature warning indicators.In this study,we analyze data from 2,419 meteorological stations over China and utilize the Coupled Model Intercomparison Project Phase 6(CMIP6)models to examine historical changes in high temperature warning indicators used by the China Meteorological Administration.We evaluate model performance and estimate future changes in these indicators using an annual cycle bias correction method.The results indicate that since 1961,the number of high temperature days(TX35d and TX40d)and length of season(TX40d and TX40l)with daily maximum temperature reaching or exceeding 35℃ and 40℃ have increased over China.The intensity of high temperatures(TXx)has strengthened and the geographical extent affected by high temperatures has expanded.In 2022,the occurrence of 40℃ high temperatures surges,with Eastern China experiencing a two-day increase in TX40d and an extended seasonal length in TX40l by over five days.While CMIP6 models have underestimated the high temperature indictors associated with 35℃ during historical periods,notable difference is not observed between the models and observations for TX40d and TX40l,given their rare occurrence.However,future projections,after bias correction,indicate that the increasing trends for 35℃ and 40℃ high temperature days and length of season become more pronounced than the raw projection,suggesting a more severe increase than that anticipated originally.As global warming intensifies,the high temperature days and length of season are projected to increase non-linearly,while the intensity of high temperatures is expected to increase linearly.For every 1℃ increase in global temperature,the intensity is projected to rise by approximately 1.4℃.The impact of high temperatures is expanding,with the major hotspot for China located in the eastern and northwestern regions.Under 5℃ global warming,certain regions in China may experience prolonged extreme high temperatures.For instance,40℃ high temperature days in areas like North China and the Yangtze River Basin could increase by about 32 d,and the length of season could extend by approximately 100 d.