In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Elect...In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.展开更多
This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the b...This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.展开更多
This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. ...This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.展开更多
The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ...The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ-OS) independently. For each Direction Of Arrival (DOA) with respect to the transmitting array, the analysis on the gain and sidelobe level of TBF output is presented. This paper focuses on the range sidelobes performance within the main beam (in angle domain). For the normal direction, due to the inherent phase property of ZCZ-OS, the TBF output has part zero sidelobes area, of which the distribution is discussed. For the other directions, a systematic search algorithm to optimize the transmission order of signals is proposed for an optimal relationship chart of DOA and transmission order. The range sidelobe performance within the main beam can be improved as the optimal transmission order is adopted.展开更多
Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output ...Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.展开更多
A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy ...A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.展开更多
Design of orthogonal code sets with ideal correlation properties is crucial for orthogonalMultiple Input Multiple Output(MIMO)radar.A modified Genetic Algorithm(GA)is proposed tonumerically design orthogonal Discrete ...Design of orthogonal code sets with ideal correlation properties is crucial for orthogonalMultiple Input Multiple Output(MIMO)radar.A modified Genetic Algorithm(GA)is proposed tonumerically design orthogonal Discrete Frequency-Coding Waveforms(DFCWs)with good correlationproperties for MIMO radar.Some of the designed results are presented,and their correlation propertiesare better than those presented in literatures.The effect of Doppler frequency shift on the performanceof these signals is simply investigated.Simulation results and comparisons show that the proposedalgorithm is more effective for the design of DFCWs with superior aperiodic correlation properties.展开更多
Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with m...Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.展开更多
This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method f...This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.展开更多
Aiming at the signal bandwidth design problem for multi-target imaging task,a kind of multiple input multiple output(MIMO)radar waveform design method is proposed.At first,the closed-loop feedback between the range pr...Aiming at the signal bandwidth design problem for multi-target imaging task,a kind of multiple input multiple output(MIMO)radar waveform design method is proposed.At first,the closed-loop feedback between the range profile and the signal bandwidth,which can design the minimum bandwidth of a transmitting signal that can distinguish each scatterer of the target in range direction,is established.Then,considering the request of beam pattern and the bandwidth limitation,a waveform optimization model is established and solved.Therefore,the multi-target observation and the dynamic adjustment of the signal bandwidth are accomplished.In the end,the simulation results prove the performance of the algorithm in a low SNR circumstance.展开更多
In order to measure the range, angle, and Doppler frequency of the target without any synchronization in the bistatic radar, a novel complete parameter estimation method based on separability of a pair of Linear Frequ...In order to measure the range, angle, and Doppler frequency of the target without any synchronization in the bistatic radar, a novel complete parameter estimation method based on separability of a pair of Linear Frequency Modulation (LFM) signal is presented. The Doppler fre-quency is measured by the time difference between two peak positions corresponding to the positive and the negative LFM return signal respectively. Direction Of Departures (DODs) and Direction Of Arrivals (DOAs) of the target are estimated by constructing a special eigenmatrix in which the es-timated angles can be extracted from the eigenvalue or the eigenvector. The target position can be located in the presence of the estimated DODs, DOAs and the signal delay difference between the echo and the directive wave signal in Multiple Input Multiple Output (MIMO) bistatic radar without any synchronization. The correctness and effectiveness of the proposed method are verified by the computer simulation.展开更多
For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform d...For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.展开更多
频率分集阵列(Frequency Diverse Array,简称FDA)在埋体管线的探测识别与成像中具有很大优势,利用其灵活的波束控制和信号处理性能,能够摆脱传统阵列发射信号限制,灵活接收和处理复杂信号。通过发出窄带信号进而获得宽带信号探测参数,...频率分集阵列(Frequency Diverse Array,简称FDA)在埋体管线的探测识别与成像中具有很大优势,利用其灵活的波束控制和信号处理性能,能够摆脱传统阵列发射信号限制,灵活接收和处理复杂信号。通过发出窄带信号进而获得宽带信号探测参数,大大降低操作成本,实现高效率、高精度、高性价比三维立体成像。现如今埋体管线探测成为城市发展中不可避免的痛点,小埋藏体检测成像更是难点问题。文章提出一种基于多进多出技术(Multiple-Input Multiple-Output,简称MIMO)的频率分集阵列三维合成孔径雷达(3D-FDA-MAR)成像方法,并将MIMO阵列引入频率分集阵列实现三维成像,建立了MIMO-FDA三维形貌成像模型。该多进多出频率分集阵列在三维空间中能够随平台运动而运动,在沿航向处得到综合孔径,根据切航向阵列能够获得仿真频率分集阵列平面,从而得到目标物成像的三维立体效果,实现精准定位,全空间透视探测,智能3D成像,小埋藏体的精准检测诊断。展开更多
文摘In this paper,the investigation of a novel compact 2×2,2×1,and 1×1 Ultra-Wide Band(UWB)based Multiple-Input Multiple-Output(MIMO)antenna with Defected Ground Structure(DGS)is employed.The proposed Electromagnetic Radiation Structures(ERS)is composed of multiple radiating elements.These MIMO antennas are designed and analyzed with and without DGS.The feeding is introduced by a microstrip-fed line to significantly moderate the radiating structure’s overall size,which is 60×40×1 mm.The high directivity and divergence characteristics are attained by introducing the microstripfed lines perpendicular to each other.And the projected MIMO antenna structures are compared with others by using parameters like Return Loss(RL),Voltage Standing Wave Ratio(VSWR),Radiation Pattern(RP),radiation efficiency,and directivity.The same MIMO set-up is redesigned with DGS,and the resultant parameters are compared.Finally,the Multiple Input and Multiple Output Radiating Structures with and without DGS are compared for result considerations like RL,VSWR,RP,radiation efficiency,and directivity.This projected antenna displays an omnidirectional RP with moderate gain,which is highly recommended for human healthcare applications.By introducing the defected ground structure in bottom layer the lower cut-off frequencies of 2.3,4.5 and 6.0 GHz are achieved with few biological effects on radio propagation in human body communications.The proposed design covers numerous well-known wireless standards,along with dual-function DGS slots,and it can be easily integrated into Wireless Body Area Networks(WBAN)in medical applications.This WBAN links the autonomous nodes that may be situated either in the clothes,on-body or beneath the skin of a person.This system typically advances the complete human body and the inter-connected nodes through a wireless communication channel.
基金supported by the National Natural Science Foundation of China(Grant Nos.61071163,61271327,and 61471191)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics,China(Grant No.BCXJ14-08)+2 种基金the Funding of Innovation Program for Graduate Education of Jiangsu Province,China(Grant No.KYLX 0277)the Fundamental Research Funds for the Central Universities,China(Grant No.3082015NP2015504)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PADA),China
文摘This paper addresses the direction of arrival (DOA) estimation problem for the co-located multiple-input multiple- output (MIMO) radar with random arrays. The spatially distributed sparsity of the targets in the background makes com- pressive sensing (CS) desirable for DOA estimation. A spatial CS framework is presented, which links the DOA estimation problem to support recovery from a known over-complete dictionary. A modified statistical model is developed to ac- curately represent the intra-block correlation of the received signal. A structural sparsity Bayesian learning algorithm is proposed for the sparse recovery problem. The proposed algorithm, which exploits intra-signal correlation, is capable being applied to limited data support and low signal-to-noise ratio (SNR) scene. Furthermore, the proposed algorithm has less computation load compared to the classical Bayesian algorithm. Simulation results show that the proposed algorithm has a more accurate DOA estimation than the traditional multiple signal classification (MUSIC) algorithm and other CS recovery algorithms.
基金supported by the National Natural Science Foundation of China (60972152 61001153)the Aeronautics Science Foundation of China (2009ZC53031)
文摘This paper analyzes the effect of waveform parame- ters on the joint target location and velocity estimation by a non- coherent multiple input multiple output (MIMO) radar transmitting multiple subcarriers signals. How the number of subcarriers in- fluences the estimation accuracy is illustrated by considering the joint Cramer-Rao bound and the mean square error of the maxi- mum likelihood estimate. The non-coherent MIMO radar ambiguity function with multiple subcarriers is developed and investigated by changing the number of subcarriers, the pulse width and the frequency spacing between adjacent subcarriers. The numerical results show that more subcarriers mean more accurate estimates, higher localization resolution, and larger pulse width results in a worse performance of target location estimation, while the fre- quency spacing affects target location estimation little.
基金Supported by the Major State Basic Research Development Program of China(973Program)(No.2011CB-707001,2010CB731903)Changjiang Scholars and Innovative Research Team in University(IRT0954)the National Natural Science Foundation of China(No.60971108,60825104)
文摘The Transmit BeamForming (TBF) technology, applied in a multiple-transmit radar system, is studied in this paper, where multiple elements of antenna array transmit binary Zero Correlation Zones Orthogonal Signals (ZCZ-OS) independently. For each Direction Of Arrival (DOA) with respect to the transmitting array, the analysis on the gain and sidelobe level of TBF output is presented. This paper focuses on the range sidelobes performance within the main beam (in angle domain). For the normal direction, due to the inherent phase property of ZCZ-OS, the TBF output has part zero sidelobes area, of which the distribution is discussed. For the other directions, a systematic search algorithm to optimize the transmission order of signals is proposed for an optimal relationship chart of DOA and transmission order. The range sidelobe performance within the main beam can be improved as the optimal transmission order is adopted.
基金supported by the National Natural Science Foundation of China(6123101761671352)
文摘Orthogonal frequency division multiplexing (OFDM) waveform enables radar and communication functions simultaneously, which encounters low angle resolution and poor data rate for traditional single input single output (SISO) systems. To solve these problems, an integrated radar and communication system (IRCS) with multiple input multiple output (MIMO) OFDM waveform is proposed. The different limitations of radar and communication in designing such a system are investigated. Then, an optimization problem is devised to obtain suitable system parameters, including the number of subcarriers, subcarrier spacing, number of symbols, pulse repetition frequency (PRF) and length of cyclic prefix (CP). Finally, to satisfy the requirements of both radar and communication, the IRCS parameters are derived in three typical cases. Several numerical results are presented to illustrate the demands of radar and communication, inconsistent or consistent, for the IRCS parameters and the superiority of the proposed system.
文摘A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.
基金the National Natural Science Foundation of China(No.60672044).
文摘Design of orthogonal code sets with ideal correlation properties is crucial for orthogonalMultiple Input Multiple Output(MIMO)radar.A modified Genetic Algorithm(GA)is proposed tonumerically design orthogonal Discrete Frequency-Coding Waveforms(DFCWs)with good correlationproperties for MIMO radar.Some of the designed results are presented,and their correlation propertiesare better than those presented in literatures.The effect of Doppler frequency shift on the performanceof these signals is simply investigated.Simulation results and comparisons show that the proposedalgorithm is more effective for the design of DFCWs with superior aperiodic correlation properties.
基金supported by the National Natural Science Foundation of China(61671137)。
文摘Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.
基金supported by the National Natural Science Foundation of China(6137116961179006)+1 种基金the Jiangsu Postdoctoral Research Funding Plan(1301013B)the Nanjing University of Aeronautics and Astronautics Funding(NZ2013208)
文摘This paper addresses the problem of four-dimensional angle and Doppler frequency estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays in spatial co- lored noise. A novel method for joint estimation of Doppler fre- quency, two-dimensional (2D) direction of departure and 2D direc- tion of arrival based on the propagator method (PM) for arbitrary arrays is discussed. A special matrix is constructed to eliminate the influence of spatial colored noise. The four-dimensional (4D) angle and Doppler frequency are extracted from the matrix and the three- dimensional (3D) coordinates of the targets are then calculated on the basis of these angles. The proposed algorithm provides a lower computational complexity and has a parameter estimation very close to that of the ESPRIT algorithm and the DOA-matrix al- gorithm in the high signal to noise ratio and the Cramer-Rao bound (CRB) is given. Furthermore, multi-dimensional parameters can be automatically paired by this algorithm to avoid performance degra- dation resulting from wrong pairing. Simulation results demonstrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(61631019)
文摘Aiming at the signal bandwidth design problem for multi-target imaging task,a kind of multiple input multiple output(MIMO)radar waveform design method is proposed.At first,the closed-loop feedback between the range profile and the signal bandwidth,which can design the minimum bandwidth of a transmitting signal that can distinguish each scatterer of the target in range direction,is established.Then,considering the request of beam pattern and the bandwidth limitation,a waveform optimization model is established and solved.Therefore,the multi-target observation and the dynamic adjustment of the signal bandwidth are accomplished.In the end,the simulation results prove the performance of the algorithm in a low SNR circumstance.
基金Supported by National Natural Science Foundation of China (No. 60601016)
文摘In order to measure the range, angle, and Doppler frequency of the target without any synchronization in the bistatic radar, a novel complete parameter estimation method based on separability of a pair of Linear Frequency Modulation (LFM) signal is presented. The Doppler fre-quency is measured by the time difference between two peak positions corresponding to the positive and the negative LFM return signal respectively. Direction Of Departures (DODs) and Direction Of Arrivals (DOAs) of the target are estimated by constructing a special eigenmatrix in which the es-timated angles can be extracted from the eigenvalue or the eigenvector. The target position can be located in the presence of the estimated DODs, DOAs and the signal delay difference between the echo and the directive wave signal in Multiple Input Multiple Output (MIMO) bistatic radar without any synchronization. The correctness and effectiveness of the proposed method are verified by the computer simulation.
基金supported by the National Natural Science Foundation of China(6107114561271331)
文摘For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.
文摘频率分集阵列(Frequency Diverse Array,简称FDA)在埋体管线的探测识别与成像中具有很大优势,利用其灵活的波束控制和信号处理性能,能够摆脱传统阵列发射信号限制,灵活接收和处理复杂信号。通过发出窄带信号进而获得宽带信号探测参数,大大降低操作成本,实现高效率、高精度、高性价比三维立体成像。现如今埋体管线探测成为城市发展中不可避免的痛点,小埋藏体检测成像更是难点问题。文章提出一种基于多进多出技术(Multiple-Input Multiple-Output,简称MIMO)的频率分集阵列三维合成孔径雷达(3D-FDA-MAR)成像方法,并将MIMO阵列引入频率分集阵列实现三维成像,建立了MIMO-FDA三维形貌成像模型。该多进多出频率分集阵列在三维空间中能够随平台运动而运动,在沿航向处得到综合孔径,根据切航向阵列能够获得仿真频率分集阵列平面,从而得到目标物成像的三维立体效果,实现精准定位,全空间透视探测,智能3D成像,小埋藏体的精准检测诊断。