期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Removal of organic matter and nitrogen from distillery wastewater by a combination of methane fermentation and denitrification/nitrification processes 被引量:6
1
作者 LI Jun ZHANG Zhen-jia +2 位作者 LI Zhi-rong HUANG Guang-yu Naoki Abe 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第4期654-659,共6页
The distillery wastewater of Guangdong Jiujiang Distillery, which is characteristic of containing high organic matters and rich total nitrogen, was treated by a combination of methane fermentation and denitrification/... The distillery wastewater of Guangdong Jiujiang Distillery, which is characteristic of containing high organic matters and rich total nitrogen, was treated by a combination of methane fermentation and denitrification/nitrification processes. 80% of COD in the raw wastewater was removed by methane fermentation at the COD volumetric loading rate of 20 kg COD/(m^3·d) using the expanded granule sludge bed (EGSB) process. However, almost all the organic nitrogen in the raw wastewater was converted into ammonia by ammonification there. Ammonia and volatile fatty acids (VFA) remaining in the anaerobically treated wastewater were simultaneously removed utilizing VFA as an electron donor by denitrification occurring in the other EGSB reactor and nitrification using PEG-immobilized nitrifying bacteria with recirculation process. An aerobic biological contact oxidization reactor was designed between denitrification/nitrification reactor for further COD removal. With the above treatment system, 18000-28000 mg/L of COD in raw wastewater was reduced to less than 100 mg/L. Also, ammonia in the effluent of the system was not detected and the system had a high removal rate for 900-1200 mg/L of TN in the raw wastewater, only leaving 400 mg/L of nitrate nitrogen. 展开更多
关键词 AMMONIA COD VFA methane fermentation DENITRIFICATION NITRIFICATION distillery wastewater immobilized nitrifyingbacteria
下载PDF
Effects of Methane Fermentation on Seed Survival of Broad-Leaved Dock (Rumexobtusifolius L.) with Dairy Manure
2
作者 Masahiro Iwasaki Suraju Adekunle Lateef Fetra Jules Andriamanohiarisoamanana Takaki Yamashiro Kazutaka Umetsu 《Journal of Agricultural Science and Technology(A)》 2013年第7期561-567,共7页
To clarify the effect of exposure to methane fermentation on the survival of seeds of Rumexobtusifolius L. contained in dairy slurry, the percentage of seed germination was observed after the mesophilic (35 ℃) and ... To clarify the effect of exposure to methane fermentation on the survival of seeds of Rumexobtusifolius L. contained in dairy slurry, the percentage of seed germination was observed after the mesophilic (35 ℃) and thermophilic (55 ℃) methane fermentation. The number of survival seed was 0% at 55 ℃, 81.6% at 35 ℃ from methane fermentation, and 0% at 55℃, 75.5% at 35 ℃ after heat treatment. The survival rate of the seeds in methane fermentation was similar to heat treatment at 35 ℃. However, in the investigation of seed status, the number of primary and secondary dormant seeds was higher than after heat treatment. This result suggests that since Rumexobtusifolius L. seeds survive in dormant state in mesophilic methane fermentation, the usage of manure as fertilizer need to be considered. 展开更多
关键词 Dairy manure methane fermentation Rumexobtusifolius L. seed survival weed seed.
下载PDF
Digestion performance and microbial community in full-scale methane fermentation of stillage from sweet potato-shochu production
3
作者 Tsutomu Kobayashi Yueqin Tang +2 位作者 Toyoshi Urakami Shigeru Morimura Kenji Kida 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期423-431,共9页
Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 105 tons per year. Wastewater mainly containing stillage from th... Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 105 tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a fullscale treatment plant using fixed-bed reactors (8 reactors ×283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand (COD) loading rate of 14 kg/(m3.day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carders installed in reactors. Bacteria in the phyla Firmieutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2~ and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance. 展开更多
关键词 thermophilic methane fermentation stillage treatment full-scale fixed-bed reactor microbial community
原文传递
Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an in vitro gas production technique 被引量:2
4
作者 ZHONG Rong-zhen FANG Yi +2 位作者 SUN Hai-xia WANG Min ZHOU Dao-wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第2期414-423,共10页
An in vitro rumen gas production technique was employed to determine the methane production and fermentation characteristics of Leymus chinensis and Medicago ruthenica at differing harvest dates(May 15,May 30,June 30... An in vitro rumen gas production technique was employed to determine the methane production and fermentation characteristics of Leymus chinensis and Medicago ruthenica at differing harvest dates(May 15,May 30,June 30,July 30,August 30 and September 30),which are sequential phases within a single continuous growth of two 10-year-old pastures.To quantify the rate of degradation and compare in vitro rumen fermentation characteristic,a logistic-exponential model,where initial gas volume was zero(LE_0),was used to fit gas production and methane output results.Dried,milled forage samples were incubated in vitro for 72 h at 39℃ and gas production was recorded intermittently throughout the incubation and gas samples were collected to measure methane production.Results showed that there were significant interactions between species and harvest for all chemical composition variables(P〈0.001) and condensed tannin content(P〈0.001).L.chinensis produced more total gas and methane than M.ruthenica(P〈0.001).Both total gas and methane production decreased lineally(P〈0.001) with advancing harvest date.The degradation rates of L.chinensis and M.ruthenica harvested on September 30 were lower than those on the other harvest dates(P〈0.01).M.ruthenica fermented fluid had higher concentration of ammonia N(P〈0.05) and molar proportions of isobutyrate(P〈0.01),valerate(P〈0.001) and isovalerate(P〈0.01) in total volatile fatty acids than L chinensis.Furthermore,concentration of isovalerate decreased cubically with advancing harvest date(P〈0.05).In conclusion,M.ruthenica produced less methane than L.chinensis and the total gas and methane production decreased with advancing harvest date for both species,which may be due to the changes in contents of chemical compositions and condensed tannin in forages. 展开更多
关键词 methane production gramineous forages leguminous forages harvests in vitro rumen fermentation
下载PDF
Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach
5
作者 Laura Maccarana Mirko Cattani +3 位作者 Franco Tagliapietra Stefano Schiavon Lucia Bailoni Roberto Mantovani 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第1期236-247,共12页
Effects of some methodological factors on in vitro measures of gas production(GP, mL/g DM), CH4production(mL/g DM) and proportion(% CH4 on total GP) were investigated by meta-analysis. These factors were conside... Effects of some methodological factors on in vitro measures of gas production(GP, mL/g DM), CH4production(mL/g DM) and proportion(% CH4 on total GP) were investigated by meta-analysis. These factors were considered:pressure in the GP equipment(0 = constant; 1 = increasing), incubation time(0 = 24; 1 = ≥ 48 h), time of rumen fluid collection(0 = before feeding; 1 = after feeding of donor animals), donor species of rumen fluid(0 = sheep; 1 =bovine), presence of N in the buffer solution(0 = presence; 1 = absence), and ratio between amount of buffered rumen fluid and feed sample(BRF/FS; 0 = ≤ 130 mL/g DM; 1 = 130–140 mL/g DM; 2 = ≥ 140 mL/g DM). The NDF content of feed sample incubated(NDF) was considered as a continuous variable. From an initial database of 105 papers, 58 were discarded because one of the above-mentioned factors was not stated. After discarding 17 papers,the final dataset comprised 30 papers(339 observations). A preliminary mixed model analysis was carried out on experimental data considering the study as random factor. Variables adjusted for study effect were analyzed using a backward stepwise analysis including the above-mentioned variables. The analysis showed that the extension of incubation time and reduction of NDF increased GP and CH4 values. Values of GP and CH4 also increased when rumen fluid was collected after feeding compared to before feeding(+26.4 and +9.0 mL/g DM, for GP and CH4),from bovine compared to sheep(+32.8 and +5.2 mL/g DM, for GP and CH4), and when the buffer solution did not contain N(+24.7 and +6.7 mL/g DM for GP and CH4). The increase of BRF/FS ratio enhanced GP and CH4production(+7.7 and +3.3 mL/g DM per each class of increase, respectively). In vitro techniques for measuring GP and CH4 production are mostly used as screening methods, thus a full standardization of such techniques is not feasible. However, a greater harmonization of analytical procedures(i.e., a reduction in the number of available protocols) would be useful to facilitate comparison between results of different experiments. 展开更多
关键词 Experimental factors Gas production In vitro rumen fermentation Meta-analysis methane production
下载PDF
Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation 被引量:3
6
作者 Yasuo Kobayashi Seongjin Oh +1 位作者 Htun Myint Satoshi Koike 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第2期317-326,共10页
In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting... In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting protein degradation to avoid excess release of ammonia, and activation of fiber digestion. The main approach has been the use of dietary supplements. Since growth-promoting antibiotics were banned in European countries in2006, safer alternatives including plant-derived materials have been explored. Plant oils, their component fatty acids,plant secondary metabolites and other compounds have been studied, and many originate or are abundantly available in Asia as agricultural byproducts. In this review, the potency of selected byproducts in inhibition of methane production and protein degradation, and in stimulation of fiber degradation was described in relation to their modes of action. In particular, cashew and ginkgo byproducts containing alkylphenols to mitigate methane emission and bean husks as a source of functional fiber to boost the number of fiber-degrading bacteria were highlighted. Other byproducts influencing rumen microbiota and fermentation profile were also described. Future application of these feed and additive candidates is very dependent on a sufficient, cost-effective supply and optimal usage in feeding practice. 展开更多
关键词 Agricultural byproduct fermentation Fiber degradation methane mitigation Microbiota Plant secondary metabolites Rumen
下载PDF
Evaluation of Greenhouse Gas Emissions from and the Economic Efficiency of the "Hita City Biomass Recycle Center" 被引量:1
7
作者 Takanobu Hamasaka 《Journal of Environmental Science and Engineering(B)》 2015年第8期426-433,共8页
Many biomass recycling facilities have been established in Japan, but its environmental efficiencies have been studied little. MIC has stated that these facilities do not work as well as expected. The environmental an... Many biomass recycling facilities have been established in Japan, but its environmental efficiencies have been studied little. MIC has stated that these facilities do not work as well as expected. The environmental and economic efficiencies ofa biomass recycling center (representative of other recycling facilities) in Hita city are assessed here. The center was built to decrease the amount of waste needing to be disposed of, and is unusual in that it generates electricity using the methane produced. Electricity produced from biomass sells at a higher price than electricity sold by electricity companies in Japan, and this strongly affects the recycling center operation. The environmental efficiency of the recycling center was assessed using a lifecycle assessment method, and the economic efficiency was assessed from the amounts of greenhouse gases emitted and the running costs. As the result, it was clear that the recycling center emits about 20% of the greenhouse gases that were previously emitted. Treating biomass at the recycling center costs 1,356 yen per ton of biomass throughout the year. In conclusion, the recycling center decreases the environmental footprint of Hita city. The cost of decreasing greenhouse gas emissions is about 1,400 yen per ton of biomass. 展开更多
关键词 Life cycle assessment greenhouse gas methane fermentation apparatus.
下载PDF
Importance of storage time in mesophilic anaerobic digestion of food waste 被引量:6
8
作者 Fan Lü Xian Xu +1 位作者 Liming Shao Pinjing He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期76-83,共8页
Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1,2, 3, 4, 5, 7, and 12 days, and then fed into a ... Storage was used as a pretreatment to enhance the methanization performance of mesophilic anaerobic digestion of food waste. Food wastes were separately stored for 0, 1,2, 3, 4, 5, 7, and 12 days, and then fed into a methanogenic reactor for a biochemical methane potential(BMP) test lasting up to 60 days. Relative to the methane production of food waste stored for 0–1 day(285–308 m L/g-added volatile solids(VSadded)), that after2–4 days and after 5–12 days of storage increased to 418–530 and 618–696 m L/g-VSadded,respectively. The efficiency of hydrolysis and acidification of pre-stored food waste in the methanization reactors increased with storage time. The characteristics of stored waste suggest that methane production was not correlated with the total hydrolysis efficiency of organics in pre-stored food waste but was positively correlated with the storage time and acidification level of the waste. From the results, we recommend 5–7 days of storage of food waste in anaerobic digestion treatment plants. 展开更多
关键词 Food waste Bio-pretreatment Storage fermentation Biochemical methane potential Hydrolysates
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部