期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Engineering of cofactor preference and catalytic activity of methanol dehydrogenase by growth-coupled directed evolution
1
作者 Jinxing Yang Liwen Fan +5 位作者 Guimin Cheng Tao Cai Jibin Sun Ping Zheng Shuang Li Yu Wang 《Green Carbon》 2024年第2期242-251,共10页
Methanol,produced from carbon dioxide,natural gas,and biomass,has drawn increasing attention as a promising green carbon feedstock for biomanufacturing due to its sustainable and energy-rich properties.Nicotinamide ad... Methanol,produced from carbon dioxide,natural gas,and biomass,has drawn increasing attention as a promising green carbon feedstock for biomanufacturing due to its sustainable and energy-rich properties.Nicotinamide adenine dinucleotide(NAD^(+))-dependent methanol dehydrogenase(MDH)catalyzes the oxidation of methanol to formaldehyde via NADH generation,providing a highly active C1 intermediate and reducing power for subsequent biosynthesis.However,the unsatisfactory catalytic efficiency and cofactor bias of MDH significantly impede methanol valorization,especially in nicotinamide adenine dinucleotide phosphate(NADP^(+))-dependent biosynthesis.Herein,we employed synthetic NADH and NADPH auxotrophic Escherichia coli strains as growth-coupled selection platforms for the directed evolution of MDH from Bacillus stearothermophilus DSM 2334.NADH or NADPH generated by MDH-catalyzed methanol oxidation enabled the growth of synthetic cofactor auxotrophs,establishing a positive correlation between the cell growth rate and MDH activity.Using this principle,MDH mutants exhibiting a 20-fold improvement in catalytic efficiency(k_(cat)/K_(m))and a 90-fold cofactor specificity switch from NAD^(+)to NADP+without a decrease in specific enzyme activity,were efficiently screened from random and semi-rationally designed libraries.We envision that these mutants will advance methanol valorization and that the synthetic cofactor auxotrophs will serve as versatile selection platforms for the evolution of NAD(P)^(+)-dependent enzymes. 展开更多
关键词 Growth-coupled screening methanol dehydrogenase Cofactor engineering Directed evolution C1 bioconversion
原文传递
Directed evolution of a neutrophilic and mesophilic methanol dehydrogenase based on high-throughput and accurate measurement of formaldehyde 被引量:1
2
作者 Jin Qian Liwen Fan +11 位作者 Jinxing Yang Jinhui Feng Ning Gao Guimin Cheng Wei Pu Wenjuan Zhou Tao Cai Shuang Li Ping Zheng Jibin Sun Depei Wang Yu Wang 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第3期386-395,共10页
Methanol is a promising one-carbon feedstock for biomanufacturing,which can be sustainably produced from carbon dioxide and natural gas.However,the efficiency of methanol bioconversion is limited by the poor catalytic... Methanol is a promising one-carbon feedstock for biomanufacturing,which can be sustainably produced from carbon dioxide and natural gas.However,the efficiency of methanol bioconversion is limited by the poor catalytic properties of nicotinamide adenine dinucleotide(NAD^(+))-dependent methanol dehydrogenase(Mdh)that oxidizes methanol to formaldehyde.Herein,the neutrophilic and mesophilic NAD^(+)-dependent Mdh from Bacillus stearothermophilus DSM 2334(Mdh_(Bs))was subjected to directed evolution for enhancing the catalytic activity.The combination of formaldehyde biosensor and Nash assay allowed high-throughput and accurate measurement of formaldehyde and facilitated efficient selection of desired variants.Mdh_(Bs)variants with up to 6.5-fold higher K_(cat)/K_(M)value for methanol were screened from random mutation libraries.The T153 residue that is spatially proximal to the substrate binding pocket has significant influence on enzyme activity.The beneficial T153P mutation changes the interaction network of this residue and breaks theα-helix important for substrate binding into two shortα-helices.Reconstructing the interaction network of T153 with surrounding residues may represent a promising strategy to further improve Mdh_(Bs),and this study provides an efficient strategy for directed evolution of Mdh. 展开更多
关键词 methanol dehydrogenase Formaldehyde biosensor Directed evolution C1 bioconversion methanol oxidation Methylotrophy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部