The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too ...The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too little attention has been given to how geometry(including the shape and feature size of the flow field)affects a current collector with an equal open ratio.In this paper,perforated and parallel current collectors with an equal open ratio of 50%and different feature sizes are designed,and the corresponding experimental results are shown to explain the geometry effects on the output power of the DMFC.The results indicate that the optimal feature sizes are between 2 and 2.5 mm for both perforated and parallel flow field in the current collectors with an equal open ratio of 50%.This means that for passive methanol fuel cells,to achieve the highest output power,the optimal feature size of the flow field in both anode and cathode current collectors is between 2 and 2.5 mm under the operating mode of this experiment.The effects of rib and channel position are also investigated,and the results indicate that the optimum pattern depends on the feature sizes of the flow field.展开更多
Recycling spent lithium-ion batteries(SLIBs)has become essential to preserve the environment and reclaim vital resources for sustainable development.The typical SLIBs recycling concentrated on separating valuable comp...Recycling spent lithium-ion batteries(SLIBs)has become essential to preserve the environment and reclaim vital resources for sustainable development.The typical SLIBs recycling concentrated on separating valuable components had limitations,including high energy consumption and complicated separation processes.This work suggests a safe hydrometallurgical process to recover usable metallic cobalt from depleted LiCoO_(2)batteries by utilizing citric acid as leachant and hydrogen peroxide as an oxidizing agent,with ethanol as a selective precipitating agent.The anode graphite was also recovered and converted to graphene oxide(GO).The above components were directly resynthesized to cobaltintegrated nitrogen-doped graphene(Co@NG).The Co@NG showed a decent activity towards oxygen reduction reaction(ORR)with a half-wave potential of 0.880 V vs.RHE,almost similar to Pt/C(0.888 V vs.RHE)and with an onset potential of 0.92 V vs.RHE.The metal-nitrogen-carbon(Co-N-C)having the highest nitrogen content has decreased the barrier for ORR since the reaction was enhanced for Co@NG-800,as confirmed by density functional theory(DFT)simulations.The Co@NG cathode catalyst coupled with commercial Pt-Ru/C as anode catalyst exhibits excellent performance for direct methanol fuel cell(DMFC)with a peak power density of 34.7 mW cm^(-2)at a discharge current density of120 m A cm^(-2)and decent stability,indicating the promising utilization of spent battery materials in DMFC applications.Besides,lithium was recovered from supernatant as lithium carbonate by coprecipitation process.This work avoids sophisticated elemental separation by utilizing SLIBs for other renewable energy applications,lowering the environmental concerns associated with recycling.展开更多
Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fue...Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fuel cells must have excellent activity toward oxygen reduction reaction and resistance to methanol oxidation reaction.This review focuses on the methanol tolerant noble metal-based electrocatalysts,including platinum and palladium-based alloys,noble metal–carbon based composites,transition metal-based catalysts,carbon-based metal catalysts,and metal-free catalysts.The understanding of the correlation between the activity and the synthesis method,electrolyte environment and stability issues are highlighted.For the transition metal-based catalyst,their activity,stability and methanol tolerance in direct methanol fuel cells and comparisons with those of platinum are particularly discussed.Finally,strategies to enhance the methanol tolerance and hinder the generation of mixed potential in direct methanol fuel cells are also presented.This review provides a perspective for future developments for the scientist in selecting suitable methanol tolerate catalyst for oxygen reduction reaction and designing high-performance practical direct methanol fuel cells.展开更多
Direct methanol fuel cells(DMFCs) have attracted extensive attention as promising next-generation energy conversion devices. However, commercialized proton exchange membranes(PEMs) hardly fulfill the demand of methano...Direct methanol fuel cells(DMFCs) have attracted extensive attention as promising next-generation energy conversion devices. However, commercialized proton exchange membranes(PEMs) hardly fulfill the demand of methanol tolerance for DMFCs employing high-concentration methanol solutions.Herein, we report a series of semi-crystalline poly(arylene ether ketone) PEMs with ultra-densely sulfonic-acid-functionalized pendants linked by flexible alkyl chains, namely, SL-SPEK-x(where x represents the molar ratio of the novel monomer containing multiple phenyl side chain to the bisfluoride monomers). The delicate structural design rendered SL-SPEK-x membranes with high crystallinity and well-defined nanoscale phase separation between hydrophilic and hydrophobic phases. The reinforcement from poly(ether ketone) crystals enabled membranes with inhibited dimensional variation and methanol penetration. Furthermore, microphase separation significantly enhanced proton conductivity. The SL-SPEK-12.5 membrane achieved the optimum trade-off between proton conductivity(0.182 S cm^(-1), 80 ℃), water swelling(13.6%, 80 ℃), and methanol permeability(1.6 × 10^(-7)cm~2 s^(-1)). The DMFC assembled by the SL-SPEK-12.5 membrane operated smoothly with a 10 M methanol solution, outputting a maximum power density of 158.3 mW cm^(-2), nearly twice that of Nafion 117(94.2 mW cm^(-2)). Overall, the novel structural optimization strategy provides the possibility of PEMs surviving in high-concentration methanol solutions, thus facilitating the miniaturization and portability of DMFC devices.展开更多
Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water elect...Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers.展开更多
Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to inve...Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to investigate the thermal responses of a tubular methanol-fueled SOFC.Results show that unlike the low-temperature condition of 873 K,where the peak temperature gradient occurs at the cell center,it appears near the fuel inlet at 1073 K because of the rapid temperature rise induced by the elevated current density.Despite the large heat convection capacity,excessive air could not eff ectively eliminate the harmful temperature gradient caused by the large current density.Thus,optimal control of the current density by properly selecting the operating potential could generate a local thermal neutral state.Interestingly,the maximum axial temperature gradient could be reduced by about 18%at 973 K and 20%at 1073 K when the air with a 5 K higher temperature is supplied.Additionally,despite the higher electrochemical performance observed,the cell with a counter-fl ow arrange-ment featured by a larger hot area and higher maximum temperature gradients is not preferable for a ceramic SOFC system considering thermal durability.Overall,this study could provide insightful thermal information for the operating condition selection,structure design,and stability assessment of realistic SOFCs combined with their internal reforming process.展开更多
Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The...Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.展开更多
A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmo...A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.展开更多
Direct methanol fuel cells (DMFCs) are promising for use in portable devices because of advantages such as high fuel energy density, low working temperature and low emission of pollutants. Nanotechnology has been us...Direct methanol fuel cells (DMFCs) are promising for use in portable devices because of advantages such as high fuel energy density, low working temperature and low emission of pollutants. Nanotechnology has been used to improve the performance of DMFCs. Catalytic materials composed of small, metallic particles with unique nanostructure supparted on carbons or metal oxides have been widely investigated for use in DMFCs. Despite our increased understanding of this type of fuel cell, many challenges still remain. This paper reviews the current developments of nanostructured elec- trocatalytic materials and porous electrodes for use in DMFCs. In particular, this review focuses on the synthesis and characterization of nanostructured catalysts and supporting materials. Both computational and experimental approaches to optimize mass transportation in porous electrodes of DMFCs, such as theoretical modeling of internal transfer processes and preparation of functional structures in membrane electrode assemblies, are introduced.展开更多
The nanostructure of the catalytic electrode has a great effect on the performance of direct metha- nol fuel cells (DMFCs), including catalyst utilization, precious metal loading, water balance, and oxygen mass tran...The nanostructure of the catalytic electrode has a great effect on the performance of direct metha- nol fuel cells (DMFCs), including catalyst utilization, precious metal loading, water balance, and oxygen mass transfer. In this work, ordered arrays of platinum nanorods with different diameters were directly grown onto microporous layers by electrodeposition via a sacrificial template, and were used as the catalytic cathode for passive DMFCs. The use of these ordered electrodes led to a dramatic decrease in cathode polarization behavior. The maximum power density of passive DMFCs fabricated with catalytic electrodes of 200 and 100 am Pt nanorod arrays were 17.3 and 12.0 mW/cm2, respectively. The obtained improvement in performance was ascribed to the fact that the ordered nanostructured electrode not only increased the electrochemically active surface area and the catalyst utilization, but also enhanced oxygen mass transfer and water balance in the system.展开更多
Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1...Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance.展开更多
Pt/CeO_(2)-C catalysts with CeO_(2)pre-calcined at 300-600 ℃were synthesized by combining hydrothermal calcination and wet im-pregnation.The effects of the pre-calcined CeO_(2)on the performance of Pt/CeO_(2)-C catal...Pt/CeO_(2)-C catalysts with CeO_(2)pre-calcined at 300-600 ℃were synthesized by combining hydrothermal calcination and wet im-pregnation.The effects of the pre-calcined CeO_(2)on the performance of Pt/CeO_(2)-C catalysts in methanol oxidation were investigated.The Pt/CeO_(2)-C catalysts with pre-calcined CeO_(2)at 300-600 ℃showed an average particle size of 2.6-2.9 nm and exhibited better methanol elec-tro-oxidation catalytic activity than the commercial Pt/C catalyst.In specific,the Pt/CeO_(2)-C catalysts with pre-calcined CeO_(2)at 400 ℃dis-played the highest electrochemical surface area value of 68.14 m2·g−1 and If/Ib ratio(the ratio of the forward scanning peak current density(If)and the backward scanning peak current density(Ib))of 1.26,which are considerably larger than those(53.23 m2·g−1 and 0.79,respectively)of the commercial Pt/C catalyst,implying greatly enhanced CO tolerance.展开更多
A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalize...A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS = 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80℃, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that ofNafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiO4-S (20%, by mass) membrane could withstand temperature up to 145℃, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion 1 15 membrane and reached 0.17 S·cm^-1, while pure SPEEK membrane dissolved at 90℃. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.展开更多
Cathode catalyst layers (CLs) with varying ionomer (Nation) contents were prepared and the direct methanol fuel cell structure and catalytic behavior were investigated as a function of ionomer content. CL roughnes...Cathode catalyst layers (CLs) with varying ionomer (Nation) contents were prepared and the direct methanol fuel cell structure and catalytic behavior were investigated as a function of ionomer content. CL roughness and thickness increased with increasing Nation content. Contact angle measurements determined that CL hydrophilicity also increased as a function of Nation content. Poor bonding between the CL, microporous layer, and the proton exchange membrane was obtained when the ionomer content was too low. The electrochemical surface areas (ESAs) were found to increase with increasing Nation content before reaching an asymptote at elevated loading levels. However, upon increasing the ionomer content above 30 wt.%, the water and oxygen mass transler properties were difficult to control. Considering the above conditions, N30 (:30 wt.% Nation) was found to be the optimal level to effectively extend the three-phase boundaries and enhance cell performance.展开更多
Electrochemical impedance spectroscopy (EIS) is widely used in fuel cell impedance analysis. However, for ohmic resistance (R Ω), EIS has some disadvantages such as long test period and complex data analysis with equ...Electrochemical impedance spectroscopy (EIS) is widely used in fuel cell impedance analysis. However, for ohmic resistance (R Ω), EIS has some disadvantages such as long test period and complex data analysis with equivalent circuits. Therefore, the current interruption method is explored to measure the value of RΩ in direct methanol fuel cells (DMFC) at different temperatures and current densities. It is found that RΩ decreases as temperature increase, and decreases initially and then increases as current density increases. These results are consistent with those measured by the EIS technique. In most cases, the ohmic resistances with current interruption (R iR ) are larger than those with EIS (R EIS ), but the difference is small, in the range from –0.848% to 5.337%. The errors of R iR at high current densities are less than those of R EIS . Our results show that the R iR data are reliable and easy to obtain in the measurement of ohmic resistance in DMFC.展开更多
This paper introduces the effects of cell operating temperature, methanol concentration and airflow rate, respectively, on the performance of direct methanol fuel cell (DMFC). A novel method based on fuzzy neural ne...This paper introduces the effects of cell operating temperature, methanol concentration and airflow rate, respectively, on the performance of direct methanol fuel cell (DMFC). A novel method based on fuzzy neural networks identification technique is proposed to establish the performance model of DMFC. Three dynamic performance models of DMFC under the influences of cell operating temperature, methanol concentration, and airflow rate are identified and established separately. Simulation results show that modeling using fuzzy neural networks identification is satisfactory with high accuracy. It is applicable to DMFC control systems.展开更多
Abstract: To enable the use of metallic components in direct methanol fuel cells (DMFCs), issues related to corrosion resistance must be considered because of an acid environment induced by the solid electrolyte. I...Abstract: To enable the use of metallic components in direct methanol fuel cells (DMFCs), issues related to corrosion resistance must be considered because of an acid environment induced by the solid electrolyte. In this study, we report the electrochemical behaviors of metal-fiber-based porous sintered components in a simulated corrosive environment of DMFCs. Three materials were evaluated: pure copper, AISI304, and AISI316L. The environmental factors and related mechanisms affecting the corrosion behaviors were analyzed. The results demonstrated that AISI316L exhibits the best performance. A higher SO4^2- concentration increases the risk of material corrosion, whereas an increase in methanol concentration inhibits corrosion. The morphological features of the corroded samples were also characterized in this study.展开更多
The Pt/FeSnO(OH)_5 catalyst has been prepared by depositing Pt nanoparticles on the synthesized FeSnO(OH)_5 nanoboxes and demonstrates excellent performance towards methanol oxidation reaction(MOR) in direct met...The Pt/FeSnO(OH)_5 catalyst has been prepared by depositing Pt nanoparticles on the synthesized FeSnO(OH)_5 nanoboxes and demonstrates excellent performance towards methanol oxidation reaction(MOR) in direct methanol fuel cells(DMFCs).The Pt/FeSnO(OH)_5 catalyst exhibits a higher mass activity(1182.35 mA/mgPt) compared with Pt/C(594.57 mA/mgPt) catalysts.The X-ray powder diffraction,field emission scanning electron microscope,field emission transmission electron microscopy,X-ray photoelectron spectroscopy and electrochemical experiments have been employed to explore the relationships between the crystal structure and electrochemical properties.The increased activity and resistance of CO poisoning for Pt/FeSnO(OH)_5 catalyst can be attributed to the strong interaction between the transition metal in the hydroxide and Pt and the bifunctional effect.The higher relative concentration of Pt^0 in Pt/FeSnO(OH)_5 also contributes to the MOR activity.Moreover,the charge transfer resistance of Pt/FeSnO(OH)_5 is lower than that of Pt/C.Therefore,Pt/FeSnO(OH)_5 has great application prospect as a high-performance electrocatalyst in DMFCs.展开更多
Copper nanoparticles were prepared by the chemical reduction method.These copper particles were embedded into the polyvinylchloride(PVC)matrix as support and used as an electrode(PVC/Cu)for the oxidation of methanol f...Copper nanoparticles were prepared by the chemical reduction method.These copper particles were embedded into the polyvinylchloride(PVC)matrix as support and used as an electrode(PVC/Cu)for the oxidation of methanol fuel for improving the current response.The PVC/Cu electrodes were characterized by thermal gravimetric analysis(TGA)for thermal stability of the electrode,X-ray diffraction(XRD)for identification of copper nanoparticles in the electrode,Fourier transform infrared spectroscopy(FTIR)to identify the interaction between PVC and Cu and scan electron microscopy(SEM)with EDAX for the morphology of the electrode.The electrocatalytic activity of the electrode was characterized by the cyclic voltammetry,linear sweep voltammetry,and chronoamperometry techniques.An increase in the electrode activity was observed with the increase of copper quantity from 0.18 g(PVC/Cu-0.18 g)to 0.24 g(PVC/Cu-0.24 g)and the maximum was found at 0.24 g of copper in the electrode.Also,it was observed that the electrode achieved the maximum catalytic current in 0.5 mol/L CH3OH+1 mol/L Na OH solution.FTIR identified that water molecules,C—H group,copper nanoparticle and its oxide were available in the electrode.SEM images with EDAX showed that copper particles were properly embedded in the polyvinylchloride matrix.展开更多
Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were ...Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology, composition and the electrochemical properties of the PtRu/C catalyst. The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm), and highly dispersed on the carbon support. The PtRu/C catalyst exhibited high catalytic activity and anti poisoned performance than that of the JM PtRu/C. It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation.展开更多
基金supported by the National Natural Science Foundation of China (No.51405342)Natural Science Foundation of Tianjin (No.20JCYBJC00050)Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology.
文摘The open ratio of a current collector has a great impact on direct methanol fuel cell(DMFC)performance.Although a number of studies have investigated the influence of the open ratio of DMFC current collectors,far too little attention has been given to how geometry(including the shape and feature size of the flow field)affects a current collector with an equal open ratio.In this paper,perforated and parallel current collectors with an equal open ratio of 50%and different feature sizes are designed,and the corresponding experimental results are shown to explain the geometry effects on the output power of the DMFC.The results indicate that the optimal feature sizes are between 2 and 2.5 mm for both perforated and parallel flow field in the current collectors with an equal open ratio of 50%.This means that for passive methanol fuel cells,to achieve the highest output power,the optimal feature size of the flow field in both anode and cathode current collectors is between 2 and 2.5 mm under the operating mode of this experiment.The effects of rib and channel position are also investigated,and the results indicate that the optimum pattern depends on the feature sizes of the flow field.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)the South Korea grant funded by the Korean government(MSIT)(2021R1A4A2000934,2023R1A2C3004336)+1 种基金The computational part of the work was supported by Department of Chemical and Biomolecular Engineering,Institute of Emergent Materials,Sogang University,via NRF Korea grant 2015M3D3A1A01064929a generous supercomputing time from KISTI。
文摘Recycling spent lithium-ion batteries(SLIBs)has become essential to preserve the environment and reclaim vital resources for sustainable development.The typical SLIBs recycling concentrated on separating valuable components had limitations,including high energy consumption and complicated separation processes.This work suggests a safe hydrometallurgical process to recover usable metallic cobalt from depleted LiCoO_(2)batteries by utilizing citric acid as leachant and hydrogen peroxide as an oxidizing agent,with ethanol as a selective precipitating agent.The anode graphite was also recovered and converted to graphene oxide(GO).The above components were directly resynthesized to cobaltintegrated nitrogen-doped graphene(Co@NG).The Co@NG showed a decent activity towards oxygen reduction reaction(ORR)with a half-wave potential of 0.880 V vs.RHE,almost similar to Pt/C(0.888 V vs.RHE)and with an onset potential of 0.92 V vs.RHE.The metal-nitrogen-carbon(Co-N-C)having the highest nitrogen content has decreased the barrier for ORR since the reaction was enhanced for Co@NG-800,as confirmed by density functional theory(DFT)simulations.The Co@NG cathode catalyst coupled with commercial Pt-Ru/C as anode catalyst exhibits excellent performance for direct methanol fuel cell(DMFC)with a peak power density of 34.7 mW cm^(-2)at a discharge current density of120 m A cm^(-2)and decent stability,indicating the promising utilization of spent battery materials in DMFC applications.Besides,lithium was recovered from supernatant as lithium carbonate by coprecipitation process.This work avoids sophisticated elemental separation by utilizing SLIBs for other renewable energy applications,lowering the environmental concerns associated with recycling.
基金supported by the National Natural Science Foundations of China(22150410340)the Chongqing Science&Technology Commission(catc2018jcyjax0582)。
文摘Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fuel cells must have excellent activity toward oxygen reduction reaction and resistance to methanol oxidation reaction.This review focuses on the methanol tolerant noble metal-based electrocatalysts,including platinum and palladium-based alloys,noble metal–carbon based composites,transition metal-based catalysts,carbon-based metal catalysts,and metal-free catalysts.The understanding of the correlation between the activity and the synthesis method,electrolyte environment and stability issues are highlighted.For the transition metal-based catalyst,their activity,stability and methanol tolerance in direct methanol fuel cells and comparisons with those of platinum are particularly discussed.Finally,strategies to enhance the methanol tolerance and hinder the generation of mixed potential in direct methanol fuel cells are also presented.This review provides a perspective for future developments for the scientist in selecting suitable methanol tolerate catalyst for oxygen reduction reaction and designing high-performance practical direct methanol fuel cells.
基金supported by the program of Jilin Provincial Department of Science and Technology (YDZJ202301ZYTS320)。
文摘Direct methanol fuel cells(DMFCs) have attracted extensive attention as promising next-generation energy conversion devices. However, commercialized proton exchange membranes(PEMs) hardly fulfill the demand of methanol tolerance for DMFCs employing high-concentration methanol solutions.Herein, we report a series of semi-crystalline poly(arylene ether ketone) PEMs with ultra-densely sulfonic-acid-functionalized pendants linked by flexible alkyl chains, namely, SL-SPEK-x(where x represents the molar ratio of the novel monomer containing multiple phenyl side chain to the bisfluoride monomers). The delicate structural design rendered SL-SPEK-x membranes with high crystallinity and well-defined nanoscale phase separation between hydrophilic and hydrophobic phases. The reinforcement from poly(ether ketone) crystals enabled membranes with inhibited dimensional variation and methanol penetration. Furthermore, microphase separation significantly enhanced proton conductivity. The SL-SPEK-12.5 membrane achieved the optimum trade-off between proton conductivity(0.182 S cm^(-1), 80 ℃), water swelling(13.6%, 80 ℃), and methanol permeability(1.6 × 10^(-7)cm~2 s^(-1)). The DMFC assembled by the SL-SPEK-12.5 membrane operated smoothly with a 10 M methanol solution, outputting a maximum power density of 158.3 mW cm^(-2), nearly twice that of Nafion 117(94.2 mW cm^(-2)). Overall, the novel structural optimization strategy provides the possibility of PEMs surviving in high-concentration methanol solutions, thus facilitating the miniaturization and portability of DMFC devices.
基金financial support from the National Natural Science Foundation of China(Nos.21875224,22179121)the Fundamental Research Founds for National University,China University of Geosciences(Wuhan)。
文摘Sluggish kinetics of methanol oxidation reaction(MOR)and alkaline hydrogen evolution reaction(HER)even on precious Pt catalyst impede the large-scale commercialization of direct methanol fuel cell(DMFC)and water electrolysis technologies.Since both of MOR and alkaline HER are related to water dissociation reaction(WDR),it is reasonable to invite secondary active sites toward WDR to pair with Pt for boosted MOR and alkaline HER activity on Pt.Mo_(2)C and Ni species are therefore employed to engineer NiPt-Mo_(2)C active site pairs,which can be encapsulated in carbon cages,via an in-situ self-confinement strategy.Mass activity of Pt in NiPt-Mo_(2)C@C toward HER is boosted to11.3 A mg_(pt)^(-1),33 times higher than that of Pt/C.Similarly,MOR catalytic activity of Pt in NiPt-Mo_(2)C@C is also improved by 10.5 times and the DMFC maximum power density is hence improved by 9-fold.By considering the great stability,NiPt-Mo_(2)C@C exhibits great practical application potential in DMFCs and water electrolysers.
基金by the Project of Strategic Importance Funding Scheme from The Hong Kong China Polytechnic University(No.P0035168)the National Natural Science Foundation of China(No.51806241).
文摘Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to investigate the thermal responses of a tubular methanol-fueled SOFC.Results show that unlike the low-temperature condition of 873 K,where the peak temperature gradient occurs at the cell center,it appears near the fuel inlet at 1073 K because of the rapid temperature rise induced by the elevated current density.Despite the large heat convection capacity,excessive air could not eff ectively eliminate the harmful temperature gradient caused by the large current density.Thus,optimal control of the current density by properly selecting the operating potential could generate a local thermal neutral state.Interestingly,the maximum axial temperature gradient could be reduced by about 18%at 973 K and 20%at 1073 K when the air with a 5 K higher temperature is supplied.Additionally,despite the higher electrochemical performance observed,the cell with a counter-fl ow arrange-ment featured by a larger hot area and higher maximum temperature gradients is not preferable for a ceramic SOFC system considering thermal durability.Overall,this study could provide insightful thermal information for the operating condition selection,structure design,and stability assessment of realistic SOFCs combined with their internal reforming process.
基金Project(50573041)supported by the National Natural Science Foundation of China
文摘Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.
文摘A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 ℃ in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.
基金supported by the National Natural Science Foundation of China(51274028)~~
文摘Direct methanol fuel cells (DMFCs) are promising for use in portable devices because of advantages such as high fuel energy density, low working temperature and low emission of pollutants. Nanotechnology has been used to improve the performance of DMFCs. Catalytic materials composed of small, metallic particles with unique nanostructure supparted on carbons or metal oxides have been widely investigated for use in DMFCs. Despite our increased understanding of this type of fuel cell, many challenges still remain. This paper reviews the current developments of nanostructured elec- trocatalytic materials and porous electrodes for use in DMFCs. In particular, this review focuses on the synthesis and characterization of nanostructured catalysts and supporting materials. Both computational and experimental approaches to optimize mass transportation in porous electrodes of DMFCs, such as theoretical modeling of internal transfer processes and preparation of functional structures in membrane electrode assemblies, are introduced.
基金supported by the National Basic Research Program of China(973 Program,2012CB932800)the National Natural Science Founda-tion of China(21533005,21276158,21303243,51506213)
文摘The nanostructure of the catalytic electrode has a great effect on the performance of direct metha- nol fuel cells (DMFCs), including catalyst utilization, precious metal loading, water balance, and oxygen mass transfer. In this work, ordered arrays of platinum nanorods with different diameters were directly grown onto microporous layers by electrodeposition via a sacrificial template, and were used as the catalytic cathode for passive DMFCs. The use of these ordered electrodes led to a dramatic decrease in cathode polarization behavior. The maximum power density of passive DMFCs fabricated with catalytic electrodes of 200 and 100 am Pt nanorod arrays were 17.3 and 12.0 mW/cm2, respectively. The obtained improvement in performance was ascribed to the fact that the ordered nanostructured electrode not only increased the electrochemically active surface area and the catalyst utilization, but also enhanced oxygen mass transfer and water balance in the system.
基金supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA09030104)the National Basic Research Program of China(973 Program,2012CB215500)+1 种基金the National Natural Science Foundation of China(2157625850823008)~~
文摘Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance.
基金This work was financially supported by the National Nat-ural Science Foundation of China(No.51774145).
文摘Pt/CeO_(2)-C catalysts with CeO_(2)pre-calcined at 300-600 ℃were synthesized by combining hydrothermal calcination and wet im-pregnation.The effects of the pre-calcined CeO_(2)on the performance of Pt/CeO_(2)-C catalysts in methanol oxidation were investigated.The Pt/CeO_(2)-C catalysts with pre-calcined CeO_(2)at 300-600 ℃showed an average particle size of 2.6-2.9 nm and exhibited better methanol elec-tro-oxidation catalytic activity than the commercial Pt/C catalyst.In specific,the Pt/CeO_(2)-C catalysts with pre-calcined CeO_(2)at 400 ℃dis-played the highest electrochemical surface area value of 68.14 m2·g−1 and If/Ib ratio(the ratio of the forward scanning peak current density(If)and the backward scanning peak current density(Ib))of 1.26,which are considerably larger than those(53.23 m2·g−1 and 0.79,respectively)of the commercial Pt/C catalyst,implying greatly enhanced CO tolerance.
基金Supported by the State Key Development Program for Basic Research of China (2008CB617502), the National Natural Science Foundation of China (20606025), and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0641).
文摘A sulfonated poly(ether ether ketone) (SPEEK) membrane with a fairly high degree of sulfonation (DS) can swell excessively and even dissolve at high temperature. To solve these problems, insolvable functionalized silica powder with sulfonic acid groups (SiOx-S) was added into the SPEEK matrix (DS = 55.1%) to prepare SPEEK/ SiOx-S composite membranes. The decrease in both the swelling degree and the methanol permeability of the membranes was a dose-dependent result of addition of the SiOx-S powder. Pure SPEEK membrane swelled 52.6% at 80℃, whereas the SPEEK/SiOx-S (15%, by mass) membrane swelled only 27.3% at the same temperature. From room temperature to 80℃, all SPEEK/SPEEK/SiOx-S composite membranes had methanol permeability of about one order of magnitude lower than that ofNafion115. Compared with pure SPEEK membranes, the addition of the SiOx-S powder not only leads to higher proton conductivity, but also increases the dimensional stability at higher temperatures, and greater proton conductivity can be achieved at higher temperature. The SPEEK/SiO4-S (20%, by mass) membrane could withstand temperature up to 145℃, at which in 100% relative humidity (RH) its proton conductivity exceeded slightly that of Nafion 1 15 membrane and reached 0.17 S·cm^-1, while pure SPEEK membrane dissolved at 90℃. The SPEEK/SiOx-S composite membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.
基金supported by the National Basic Research Program of China(973 Program,2012CB932800)the National Natural Science Foundationof China(21433003,21373199)the Science&Technology Research Programs of Jilin Province(20150101066JC,20160622037JC)
文摘Cathode catalyst layers (CLs) with varying ionomer (Nation) contents were prepared and the direct methanol fuel cell structure and catalytic behavior were investigated as a function of ionomer content. CL roughness and thickness increased with increasing Nation content. Contact angle measurements determined that CL hydrophilicity also increased as a function of Nation content. Poor bonding between the CL, microporous layer, and the proton exchange membrane was obtained when the ionomer content was too low. The electrochemical surface areas (ESAs) were found to increase with increasing Nation content before reaching an asymptote at elevated loading levels. However, upon increasing the ionomer content above 30 wt.%, the water and oxygen mass transler properties were difficult to control. Considering the above conditions, N30 (:30 wt.% Nation) was found to be the optimal level to effectively extend the three-phase boundaries and enhance cell performance.
基金Supported by the National High Technology Research and Development Program of China (2007AA05Z150) the National Natural Science Foundation of China (50911140287 50973055)
文摘Electrochemical impedance spectroscopy (EIS) is widely used in fuel cell impedance analysis. However, for ohmic resistance (R Ω), EIS has some disadvantages such as long test period and complex data analysis with equivalent circuits. Therefore, the current interruption method is explored to measure the value of RΩ in direct methanol fuel cells (DMFC) at different temperatures and current densities. It is found that RΩ decreases as temperature increase, and decreases initially and then increases as current density increases. These results are consistent with those measured by the EIS technique. In most cases, the ohmic resistances with current interruption (R iR ) are larger than those with EIS (R EIS ), but the difference is small, in the range from –0.848% to 5.337%. The errors of R iR at high current densities are less than those of R EIS . Our results show that the R iR data are reliable and easy to obtain in the measurement of ohmic resistance in DMFC.
基金Project supported by the National High-Technology Research and Development Program Foundation of China(Grant No.2003AA517020)
文摘This paper introduces the effects of cell operating temperature, methanol concentration and airflow rate, respectively, on the performance of direct methanol fuel cell (DMFC). A novel method based on fuzzy neural networks identification technique is proposed to establish the performance model of DMFC. Three dynamic performance models of DMFC under the influences of cell operating temperature, methanol concentration, and airflow rate are identified and established separately. Simulation results show that modeling using fuzzy neural networks identification is satisfactory with high accuracy. It is applicable to DMFC control systems.
基金financially supported by the Natural Science Foundation of Guangdong Province, China (No. S2013040016899)the Fundamental Research Funds for Central Universities of China (No. 2013ZM0003)+1 种基金the National Natural Science Foundation of China (No. 51275180)the Open Fund of Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures (No. 2013001)
文摘Abstract: To enable the use of metallic components in direct methanol fuel cells (DMFCs), issues related to corrosion resistance must be considered because of an acid environment induced by the solid electrolyte. In this study, we report the electrochemical behaviors of metal-fiber-based porous sintered components in a simulated corrosive environment of DMFCs. Three materials were evaluated: pure copper, AISI304, and AISI316L. The environmental factors and related mechanisms affecting the corrosion behaviors were analyzed. The results demonstrated that AISI316L exhibits the best performance. A higher SO4^2- concentration increases the risk of material corrosion, whereas an increase in methanol concentration inhibits corrosion. The morphological features of the corroded samples were also characterized in this study.
基金supported by the State Key Laboratory of Photocatalysis on Energy and Environment Open Project(SKLPEE-KF201606)Fuzhou University Testing Fund of precious apparatus(2017T007)
文摘The Pt/FeSnO(OH)_5 catalyst has been prepared by depositing Pt nanoparticles on the synthesized FeSnO(OH)_5 nanoboxes and demonstrates excellent performance towards methanol oxidation reaction(MOR) in direct methanol fuel cells(DMFCs).The Pt/FeSnO(OH)_5 catalyst exhibits a higher mass activity(1182.35 mA/mgPt) compared with Pt/C(594.57 mA/mgPt) catalysts.The X-ray powder diffraction,field emission scanning electron microscope,field emission transmission electron microscopy,X-ray photoelectron spectroscopy and electrochemical experiments have been employed to explore the relationships between the crystal structure and electrochemical properties.The increased activity and resistance of CO poisoning for Pt/FeSnO(OH)_5 catalyst can be attributed to the strong interaction between the transition metal in the hydroxide and Pt and the bifunctional effect.The higher relative concentration of Pt^0 in Pt/FeSnO(OH)_5 also contributes to the MOR activity.Moreover,the charge transfer resistance of Pt/FeSnO(OH)_5 is lower than that of Pt/C.Therefore,Pt/FeSnO(OH)_5 has great application prospect as a high-performance electrocatalyst in DMFCs.
文摘Copper nanoparticles were prepared by the chemical reduction method.These copper particles were embedded into the polyvinylchloride(PVC)matrix as support and used as an electrode(PVC/Cu)for the oxidation of methanol fuel for improving the current response.The PVC/Cu electrodes were characterized by thermal gravimetric analysis(TGA)for thermal stability of the electrode,X-ray diffraction(XRD)for identification of copper nanoparticles in the electrode,Fourier transform infrared spectroscopy(FTIR)to identify the interaction between PVC and Cu and scan electron microscopy(SEM)with EDAX for the morphology of the electrode.The electrocatalytic activity of the electrode was characterized by the cyclic voltammetry,linear sweep voltammetry,and chronoamperometry techniques.An increase in the electrode activity was observed with the increase of copper quantity from 0.18 g(PVC/Cu-0.18 g)to 0.24 g(PVC/Cu-0.24 g)and the maximum was found at 0.24 g of copper in the electrode.Also,it was observed that the electrode achieved the maximum catalytic current in 0.5 mol/L CH3OH+1 mol/L Na OH solution.FTIR identified that water molecules,C—H group,copper nanoparticle and its oxide were available in the electrode.SEM images with EDAX showed that copper particles were properly embedded in the polyvinylchloride matrix.
文摘Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology, composition and the electrochemical properties of the PtRu/C catalyst. The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm), and highly dispersed on the carbon support. The PtRu/C catalyst exhibited high catalytic activity and anti poisoned performance than that of the JM PtRu/C. It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation.