AIM To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis(NASH) development in mice fed a methionine-choline-deficient(MCD) diet. METHODS Twenty-four male C57 BL/6 J mice were equ...AIM To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis(NASH) development in mice fed a methionine-choline-deficient(MCD) diet. METHODS Twenty-four male C57 BL/6 J mice were equally divided into four groups and fed a methionine-choline-sufficient diet for 2 wk(Control 2 w group,n = 6) or 4 wk(Control 4 w group,n = 6) or the MCD diet for 2 wk(MCD 2 w group,n = 6) or 4 wk(MCD 4 w group,n = 6). Liver injury,fibrosis,and intestinal barrier function were evaluated after 2 and 4 wk of feeding. The fecal microbiome and metabolome were studied using 16 s r RNA deep sequencing and gas chromatography-mass spectrometry. RESULTS The mice fed the MCD diet presented with simple hepatic steatosis and slight intestinal barrier deterioration after 2 wk. After 4 wk of feeding with the MCD diet,however,the mice developed prominent NASH with liver fibrosis,and the intestinal barrier was more impaired. Compared with the control diet,the MCD diet induced gradual gut microbiota dysbiosis,as evidenced by a marked decrease in the abundance of Alistipes and the(Eubacterium) coprostanoligenes group(P < 0.001 and P < 0.05,respectively) and a significant increase in Ruminococcaceae UCG 014 abundance(P < 0.05) after 2 wk. At 4 wk,the MCD diet significantly reduced the promising probiotic Bifidobacterium levels and markedly promoted Bacteroides abundance(P < 0.05,and P < 0.01,respectively). The fecal metabolomic profile was also substantially altered by the MCD diet: At 2 wk,arachidic acid,hexadecane,palmitic acid,and tetracosane were selected as potential biomarkers that were significantly different in the corresponding control group,and at 4 wk,cholic acid,cholesterol,arachidic acid,tetracosane,and stearic acid were selected. CONCLUSION The MCD diet induced persistent alterations in the gut microbiota and metabolome.展开更多
Nonalcoholic steatohepatitis(NASH) is one of the most common liver diseases and a major cause of liver fibrosis worldwide.r-Aminobutyric acid(GABA) is one of the most abundant inhibitory neurotransmitters in the c...Nonalcoholic steatohepatitis(NASH) is one of the most common liver diseases and a major cause of liver fibrosis worldwide.r-Aminobutyric acid(GABA) is one of the most abundant inhibitory neurotransmitters in the central nervous system.Recently,it has been reported that GABAergic signaling pathways are found in various non-neuronal tissues including the immune system and play a functional role.In the present study,we investigated whether administration of GABA has effects on NASH through its immunomodulatory effects.To test this hypothesis,C57BL/6 mice were fed a methionine-choline-deficient(MCD) diet for 8 weeks.After four weeks into MCD feeding,mice were provided with plain water(control) or water containing 2 mg/mL of GABA for the subsequent 4 weeks.Using this MCD diet-induced NASH model,we found that mice receiving GABA showed more severe steatohepatitis and liver fibrosis than control mice.This increased liver damage was confirmed by higher levels of serum alanine transaminase(ALT) and aspartate aminotransferase(AST) compared to the control group.In accordance with increased liver steatohepatitis,NASH-related and inflammatory gene expression(collagen al,tissue inhibitor of metalloproteinase-1,TNF-α) in the liver was markedly increased in GABA-treated mice.Furthermore,GABA directly enhanced production of inflammatory cytokines including IL-6 and TNF-α in LPS activated RAW macrophage cells and increased TIB-73 hepatocyte death.Such effects were abolished when GABA was treated with bicuculline,a competitive antagonist of GABA receptors.These results suggest that oral administration of GABA may be involved in changes of the liver immune milieu and conferred detrimental effects on NASH progression.展开更多
BACKGROUND: Worldwide, about 25% of individuals with chronic hepatitis B have fatty liver disease. Lipogenic diets that are completely devoid of methionine and choline induce nonalcoholic fatty liver disease. However,...BACKGROUND: Worldwide, about 25% of individuals with chronic hepatitis B have fatty liver disease. Lipogenic diets that are completely devoid of methionine and choline induce nonalcoholic fatty liver disease. However, no animal model of nonalcoholic steatohepatitis associated with HBV infection is available, and the influence of viral infection on nutritional hepatic steatosis is unclear. METHODS: We used HBV surface antigen transgenic mice (HBs-Tg mice), which mimic healthy human carriers with hepatitis B surface antigen. The mice were fed with a high-fat methionine-choline-deficient diet (MCD) to build a reliable rodent nutritional model of nonalcoholic steatohepatitis associated with HBV infection, and the changes in body weight and serum triglycerides were measured. Hepatocyte ballooning changes were determined by hematoxylin and eosin staining. The extent of hepatic fat accumulation was evaluated by oil red O staining. Immunohistochemical assays were performed to detect proliferating cell nuclear antigen as an index of cell proliferation. RESULTS: MCD feeding provoked systemic weight loss and liver injury. MCD feeding caused more macrovesicular fat droplets and fat accumulation in the livers of HBs-Tg mice than in wild-type C57BL/6 mice. In addition, within 30 days of MCD exposure, more PCNA-positive nuclei were found in the livers of HBs-Tg mice. CONCLUSIONS: HBs-Tg mice fed with a lipogenic MCD form more macrovesicular fat droplets earlier, coincident with more hepatocyte proliferation, resulting in the appearance of increased susceptibility to experimental steatohepatitis in these mice.展开更多
BACKGROUND Arachidyl amido cholanoic acid(Aramchol)is a potent downregulator of hepatic stearoyl-CoA desaturase 1(SCD1)protein expression that reduces liver triglycerides and fibrosis in animal models of steatohepatit...BACKGROUND Arachidyl amido cholanoic acid(Aramchol)is a potent downregulator of hepatic stearoyl-CoA desaturase 1(SCD1)protein expression that reduces liver triglycerides and fibrosis in animal models of steatohepatitis.In a phase IIb clinical trial in patients with nonalcoholic steatohepatitis(NASH),52 wk of treatment with Aramchol reduced blood levels of glycated hemoglobin A1c,an indicator of glycemic control.AIM To assess lipid and glucose metabolism in mouse hepatocytes and in a NASH mouse model[induced with a 0.1%methionine and choline deficient diet(0.1MCD)]after treatment with Aramchol.METHODS Isolated primary mouse hepatocytes were incubated with 20μmol/L Aramchol or vehicle for 48 h.Subsequently,analyses were performed including Western blot,proteomics by mass spectrometry,and fluxomic analysis with 13C-uniformly labeled glucose.For the in vivo part of the study,male C57BL/6J mice were randomly fed a control or 0.1MCD for 4 wk and received 1 or 5 mg/kg/d Aramchol or vehicle by intragastric gavage for the last 2 wk.Liver metabolomics were assessed using ultra-high-performance liquid chromatography-time of flight-MS for the determination of glucose metabolism-related metabolites.RESULTS Combination of proteomics and Western blot analyses showed increased AMPK activity while the activity of nutrient sensor mTORC1 was decreased by Aramchol in hepatocytes.This translated into changes in the content of their downstream targets including proteins involved in fatty acid(FA)synthesis and oxidation[PACCα/β(S79),SCD1,CPT1A/B,HADHA,and HADHB],oxidative phosphorylation(NDUFA9,NDUFB11,NDUFS1,NDUFV1,ETFDH,and UQCRC2),tricarboxylic acid(TCA)cycle(MDH2,SUCLA2,and SUCLG2),and ribosome(P-p70S6K[T389]and P-S6[S235/S236]).Flux experiments with 13Cuniformely labeled glucose showed that TCA cycle cataplerosis was reduced by Aramchol in hepatocytes,as indicated by the increase in the number of rounds that malate remained in the TCA cycle.Finally,liver metabolomic analysis showed that glucose homeostasis was improved by Aramchol in 0.1MCD fed mice in a dose-dependent manner,showing normalization of glucose,G6P,F6P,UDP-glucose,and Rbl5P/Xyl5P.CONCLUSION Aramchol exerts its effect on glucose and lipid metabolism in NASH through activation of AMPK and inhibition of mTORC1,which in turn activate FAβ-oxidation and oxidative phosphorylation.展开更多
基金the National Natural Science Foundation of China,No.81330011,No.81790631,and No.81790633the Science Fund for Creative Research Groups of the National Natural Science Foundation of China,No.81721091the National Basic Research Program of China(973 program),No.2013CB531401
文摘AIM To investigate changes in gut microbiota and metabolism during nonalcoholic steatohepatitis(NASH) development in mice fed a methionine-choline-deficient(MCD) diet. METHODS Twenty-four male C57 BL/6 J mice were equally divided into four groups and fed a methionine-choline-sufficient diet for 2 wk(Control 2 w group,n = 6) or 4 wk(Control 4 w group,n = 6) or the MCD diet for 2 wk(MCD 2 w group,n = 6) or 4 wk(MCD 4 w group,n = 6). Liver injury,fibrosis,and intestinal barrier function were evaluated after 2 and 4 wk of feeding. The fecal microbiome and metabolome were studied using 16 s r RNA deep sequencing and gas chromatography-mass spectrometry. RESULTS The mice fed the MCD diet presented with simple hepatic steatosis and slight intestinal barrier deterioration after 2 wk. After 4 wk of feeding with the MCD diet,however,the mice developed prominent NASH with liver fibrosis,and the intestinal barrier was more impaired. Compared with the control diet,the MCD diet induced gradual gut microbiota dysbiosis,as evidenced by a marked decrease in the abundance of Alistipes and the(Eubacterium) coprostanoligenes group(P < 0.001 and P < 0.05,respectively) and a significant increase in Ruminococcaceae UCG 014 abundance(P < 0.05) after 2 wk. At 4 wk,the MCD diet significantly reduced the promising probiotic Bifidobacterium levels and markedly promoted Bacteroides abundance(P < 0.05,and P < 0.01,respectively). The fecal metabolomic profile was also substantially altered by the MCD diet: At 2 wk,arachidic acid,hexadecane,palmitic acid,and tetracosane were selected as potential biomarkers that were significantly different in the corresponding control group,and at 4 wk,cholic acid,cholesterol,arachidic acid,tetracosane,and stearic acid were selected. CONCLUSION The MCD diet induced persistent alterations in the gut microbiota and metabolome.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government(No.2008-0061604)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF),whichis funded by the Ministry of Science,ICT & Future Planning 18(2014R1A1A1006622)
文摘Nonalcoholic steatohepatitis(NASH) is one of the most common liver diseases and a major cause of liver fibrosis worldwide.r-Aminobutyric acid(GABA) is one of the most abundant inhibitory neurotransmitters in the central nervous system.Recently,it has been reported that GABAergic signaling pathways are found in various non-neuronal tissues including the immune system and play a functional role.In the present study,we investigated whether administration of GABA has effects on NASH through its immunomodulatory effects.To test this hypothesis,C57BL/6 mice were fed a methionine-choline-deficient(MCD) diet for 8 weeks.After four weeks into MCD feeding,mice were provided with plain water(control) or water containing 2 mg/mL of GABA for the subsequent 4 weeks.Using this MCD diet-induced NASH model,we found that mice receiving GABA showed more severe steatohepatitis and liver fibrosis than control mice.This increased liver damage was confirmed by higher levels of serum alanine transaminase(ALT) and aspartate aminotransferase(AST) compared to the control group.In accordance with increased liver steatohepatitis,NASH-related and inflammatory gene expression(collagen al,tissue inhibitor of metalloproteinase-1,TNF-α) in the liver was markedly increased in GABA-treated mice.Furthermore,GABA directly enhanced production of inflammatory cytokines including IL-6 and TNF-α in LPS activated RAW macrophage cells and increased TIB-73 hepatocyte death.Such effects were abolished when GABA was treated with bicuculline,a competitive antagonist of GABA receptors.These results suggest that oral administration of GABA may be involved in changes of the liver immune milieu and conferred detrimental effects on NASH progression.
基金supported by grants from the National Natural Science Foundation of China (30730084 and 30721002)the National Key Basic Research Program of China (973 Program) (2009CB522403,2007CB512405,and 2007CB512807)
文摘BACKGROUND: Worldwide, about 25% of individuals with chronic hepatitis B have fatty liver disease. Lipogenic diets that are completely devoid of methionine and choline induce nonalcoholic fatty liver disease. However, no animal model of nonalcoholic steatohepatitis associated with HBV infection is available, and the influence of viral infection on nutritional hepatic steatosis is unclear. METHODS: We used HBV surface antigen transgenic mice (HBs-Tg mice), which mimic healthy human carriers with hepatitis B surface antigen. The mice were fed with a high-fat methionine-choline-deficient diet (MCD) to build a reliable rodent nutritional model of nonalcoholic steatohepatitis associated with HBV infection, and the changes in body weight and serum triglycerides were measured. Hepatocyte ballooning changes were determined by hematoxylin and eosin staining. The extent of hepatic fat accumulation was evaluated by oil red O staining. Immunohistochemical assays were performed to detect proliferating cell nuclear antigen as an index of cell proliferation. RESULTS: MCD feeding provoked systemic weight loss and liver injury. MCD feeding caused more macrovesicular fat droplets and fat accumulation in the livers of HBs-Tg mice than in wild-type C57BL/6 mice. In addition, within 30 days of MCD exposure, more PCNA-positive nuclei were found in the livers of HBs-Tg mice. CONCLUSIONS: HBs-Tg mice fed with a lipogenic MCD form more macrovesicular fat droplets earlier, coincident with more hepatocyte proliferation, resulting in the appearance of increased susceptibility to experimental steatohepatitis in these mice.
基金National Institutes of Health Grant,No.R01CA172086Plan Nacional of I+D,No.SAF2017-88041-R+5 种基金Ministerio de Economía y Competitividad de España,No.SAF2017-87301-RAsociación Española contra el Cáncer,No.AECC17/302Ayudas Fundación BBVA a equipos de Investigación Científica 2018Fondo Europeo de Desarrollo Regional,Ministerio de Economia y Competitividad de España,No.PGC2018-099857-BI00Basque Government Grants,No.IT1264-19Ministerio de Economia y Competitividad de España for the Severo Ochoa Excellence Accreditation,No.SEV-2016-0644.The funders had no role in study design,data collection and analysis,decision to publish,or preparation of the manuscript.
文摘BACKGROUND Arachidyl amido cholanoic acid(Aramchol)is a potent downregulator of hepatic stearoyl-CoA desaturase 1(SCD1)protein expression that reduces liver triglycerides and fibrosis in animal models of steatohepatitis.In a phase IIb clinical trial in patients with nonalcoholic steatohepatitis(NASH),52 wk of treatment with Aramchol reduced blood levels of glycated hemoglobin A1c,an indicator of glycemic control.AIM To assess lipid and glucose metabolism in mouse hepatocytes and in a NASH mouse model[induced with a 0.1%methionine and choline deficient diet(0.1MCD)]after treatment with Aramchol.METHODS Isolated primary mouse hepatocytes were incubated with 20μmol/L Aramchol or vehicle for 48 h.Subsequently,analyses were performed including Western blot,proteomics by mass spectrometry,and fluxomic analysis with 13C-uniformly labeled glucose.For the in vivo part of the study,male C57BL/6J mice were randomly fed a control or 0.1MCD for 4 wk and received 1 or 5 mg/kg/d Aramchol or vehicle by intragastric gavage for the last 2 wk.Liver metabolomics were assessed using ultra-high-performance liquid chromatography-time of flight-MS for the determination of glucose metabolism-related metabolites.RESULTS Combination of proteomics and Western blot analyses showed increased AMPK activity while the activity of nutrient sensor mTORC1 was decreased by Aramchol in hepatocytes.This translated into changes in the content of their downstream targets including proteins involved in fatty acid(FA)synthesis and oxidation[PACCα/β(S79),SCD1,CPT1A/B,HADHA,and HADHB],oxidative phosphorylation(NDUFA9,NDUFB11,NDUFS1,NDUFV1,ETFDH,and UQCRC2),tricarboxylic acid(TCA)cycle(MDH2,SUCLA2,and SUCLG2),and ribosome(P-p70S6K[T389]and P-S6[S235/S236]).Flux experiments with 13Cuniformely labeled glucose showed that TCA cycle cataplerosis was reduced by Aramchol in hepatocytes,as indicated by the increase in the number of rounds that malate remained in the TCA cycle.Finally,liver metabolomic analysis showed that glucose homeostasis was improved by Aramchol in 0.1MCD fed mice in a dose-dependent manner,showing normalization of glucose,G6P,F6P,UDP-glucose,and Rbl5P/Xyl5P.CONCLUSION Aramchol exerts its effect on glucose and lipid metabolism in NASH through activation of AMPK and inhibition of mTORC1,which in turn activate FAβ-oxidation and oxidative phosphorylation.