Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipula...Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.展开更多
In this letter, a new moment method using helical segments is presented to model Normal Mode Helical Antenna (NMHA). Using this method, the NMHA can be modeled by a few segments. The current distributions and radiatio...In this letter, a new moment method using helical segments is presented to model Normal Mode Helical Antenna (NMHA). Using this method, the NMHA can be modeled by a few segments. The current distributions and radiation patterns of some NMHAs are calculated.A comparison is made between results obtained using this helical segment algorithm and a linear segment algorithm, and the results of the two algorithms agree fairly well. When calculating the impedance matrix [Z], all the elements of the matrix can be obtained by only calculating a few elements with the application of the symmetric and periodic characteristics of the NMHA.Therefore, the CPU time and the memory storage are significantly reduced, with the accuracy and speed enhanced.展开更多
An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the rea...An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the real model superposition approximation method to the seismic response calculation of industrial buildings.The analysis using lumped mass-and-shear spring models indicates that for the equipment-to-structure frequency ratiosγf>1.1 orγf<0.9,the non-classical damping effect is limited,and the real mode superposition approximation method provides accurate estimates.For 0.9<γf<1.1,the system may have a pair of closely spaced frequency modes,and the non-zero off-diagonal damping terms have a non-negligible effect on the damping ratios and mode shape vectors of these modes.For 0.9<γf<1.1 and the equipment-to-structure mass ratiosγm<0.07,the real mode superposition approximation method results in large errors,while the approximation method can provide an accurate estimation for 0.9<γf<1.1 andγm>0.07.Furthermore,extensive parametric analyses are conducted,where both steel structures and reinforced concrete structures with equipment with various damping ratios are considered.Finally,the finite element analysis of a five-story industrial building is adopted to validate the proposed range of applicability.展开更多
A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are ...A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path.For each increment of the crack extension,the meshless method is applied to carry out a stress analysis of the cracked structure.The J-integral,which can be decomposed into mode Ⅰ and mode Ⅱ for mixed-mode crack,is used for the evaluation of the stress intensity factors(SIFs).The crack-propagation direction,predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method.The meshless results agree well with the experimental ones,which validates the accuracy and efficiency of the method.展开更多
We compare three different methods to extract coherent modes from Doppler backscattering (DBS), which are center of gravity (COG) of the complex amplitude spectrum, spectrum of DBS phase derivative (phase derivat...We compare three different methods to extract coherent modes from Doppler backscattering (DBS), which are center of gravity (COG) of the complex amplitude spectrum, spectrum of DBS phase derivative (phase derivative method), and phase spectrum, respectively. These three methods are all feasible to extract coherent modes, for example, geodesic acoustic mode oscillation. However, there are stilI differences between dealing with high frequency modes (several hundred kHz) and low frequency modes, (several kHz) hiding in DBS signal. There is a significant amount of power at low frequencies in the phase spectrum, which can be removed by using the phase derivative method and COG. High frequency modes are clearer by using the COO and the phase derivative method than the phase spectrum. The spectrum of DBS amplitude does not show the coherent modes detected by using COG, phase derivative method and phase spectrum. When two Doppler shifted peaks exist, coherent modes and their harmonics appear in the spectrum of DBS amplitude, which are introduced by the DBS phase.展开更多
<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important app...<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>展开更多
The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and e...The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and economy is particularly important for the decision of neutral grounding mode. This paper proposes a new decision method of neutral point grounding mode for mediumvoltage distribution network. The objective function is constructed for the decision according the life cycle cost. The reliability of the neutral point grounding mode is taken into account through treating the outage cost as an operating cost. The safety condition of the neutral point grounding mode is preserved as the constraint condition of decision models, so the decision method can generate the most economical and reliable scheme of neutral point grounding mode within a safe limit. The example is used to verify the feasibility and effectiveness of the decision method.展开更多
This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a...This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a special purpose Trefftz function for crack elements are proposed in deriving the Galerkin and the collocation techniques of HT BEM. Then two auxiliary functions are introduced to improve the accuracy of the displacement field near the crack tips, and stress intensity factor (SIF) is evaluated by local crack elements as well. Furthermore, numerical examples are given, including comparisons of the present results with the analytical solution and the other numerical methods, to demonstrate the efficiency for different boundary conditions and to illustrate the convergence influenced by several parameters. It shows that HT BEM by usingthe Galerkin and the collocation techniques is effective for mode III fracture problems.展开更多
This paper is devoted to the application of branch mode method in the critical speed ana-lysis of compound rotating systems, in which the distributed inertia including gyroscopic effectand distributed elastic support ...This paper is devoted to the application of branch mode method in the critical speed ana-lysis of compound rotating systems, in which the distributed inertia including gyroscopic effectand distributed elastic support are taken into account. Finally, the method introduced in this paper is used to calculate the critical speeds of anew-type spindle on the spinning frame. The first three critical Speeds are calculated and com-pared with the values obtained from the experimental approach and other theoretical methods.The results show that they are in good agreement with each other.展开更多
This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing...This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10<sup>-2</sup> at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 10<sup>4</sup> at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W<sup>-1</sup>⋅Km<sup>-1</sup> for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm⋅km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.展开更多
文摘Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.
文摘In this letter, a new moment method using helical segments is presented to model Normal Mode Helical Antenna (NMHA). Using this method, the NMHA can be modeled by a few segments. The current distributions and radiation patterns of some NMHAs are calculated.A comparison is made between results obtained using this helical segment algorithm and a linear segment algorithm, and the results of the two algorithms agree fairly well. When calculating the impedance matrix [Z], all the elements of the matrix can be obtained by only calculating a few elements with the application of the symmetric and periodic characteristics of the NMHA.Therefore, the CPU time and the memory storage are significantly reduced, with the accuracy and speed enhanced.
基金Fund of China National Industrial Building Diagnosis and Reconstruction Engineering Technology Research Center under Grant No.YZA2017Ky03the Beijing Natural Science Foundation under Grant No.JQ18029the National Natural Science Foundation of China under Grant No.52078277。
文摘An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this paper is to quantify the range of applicability of the real model superposition approximation method to the seismic response calculation of industrial buildings.The analysis using lumped mass-and-shear spring models indicates that for the equipment-to-structure frequency ratiosγf>1.1 orγf<0.9,the non-classical damping effect is limited,and the real mode superposition approximation method provides accurate estimates.For 0.9<γf<1.1,the system may have a pair of closely spaced frequency modes,and the non-zero off-diagonal damping terms have a non-negligible effect on the damping ratios and mode shape vectors of these modes.For 0.9<γf<1.1 and the equipment-to-structure mass ratiosγm<0.07,the real mode superposition approximation method results in large errors,while the approximation method can provide an accurate estimation for 0.9<γf<1.1 andγm>0.07.Furthermore,extensive parametric analyses are conducted,where both steel structures and reinforced concrete structures with equipment with various damping ratios are considered.Finally,the finite element analysis of a five-story industrial building is adopted to validate the proposed range of applicability.
基金Project supported by the National Natural Science Foundation of China(Nos.59825117 and 50175060).
文摘A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path.For each increment of the crack extension,the meshless method is applied to carry out a stress analysis of the cracked structure.The J-integral,which can be decomposed into mode Ⅰ and mode Ⅱ for mixed-mode crack,is used for the evaluation of the stress intensity factors(SIFs).The crack-propagation direction,predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method.The meshless results agree well with the experimental ones,which validates the accuracy and efficiency of the method.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10990210 and 11475173the National Magnetic Confinement Fusion Energy Program of China under Grant Nos 2013GB106002 and 2014GB109002
文摘We compare three different methods to extract coherent modes from Doppler backscattering (DBS), which are center of gravity (COG) of the complex amplitude spectrum, spectrum of DBS phase derivative (phase derivative method), and phase spectrum, respectively. These three methods are all feasible to extract coherent modes, for example, geodesic acoustic mode oscillation. However, there are stilI differences between dealing with high frequency modes (several hundred kHz) and low frequency modes, (several kHz) hiding in DBS signal. There is a significant amount of power at low frequencies in the phase spectrum, which can be removed by using the phase derivative method and COG. High frequency modes are clearer by using the COO and the phase derivative method than the phase spectrum. The spectrum of DBS amplitude does not show the coherent modes detected by using COG, phase derivative method and phase spectrum. When two Doppler shifted peaks exist, coherent modes and their harmonics appear in the spectrum of DBS amplitude, which are introduced by the DBS phase.
文摘<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div>
文摘The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and economy is particularly important for the decision of neutral grounding mode. This paper proposes a new decision method of neutral point grounding mode for mediumvoltage distribution network. The objective function is constructed for the decision according the life cycle cost. The reliability of the neutral point grounding mode is taken into account through treating the outage cost as an operating cost. The safety condition of the neutral point grounding mode is preserved as the constraint condition of decision models, so the decision method can generate the most economical and reliable scheme of neutral point grounding mode within a safe limit. The example is used to verify the feasibility and effectiveness of the decision method.
基金the National Natural Science Foundation of China(10472082).
文摘This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a special purpose Trefftz function for crack elements are proposed in deriving the Galerkin and the collocation techniques of HT BEM. Then two auxiliary functions are introduced to improve the accuracy of the displacement field near the crack tips, and stress intensity factor (SIF) is evaluated by local crack elements as well. Furthermore, numerical examples are given, including comparisons of the present results with the analytical solution and the other numerical methods, to demonstrate the efficiency for different boundary conditions and to illustrate the convergence influenced by several parameters. It shows that HT BEM by usingthe Galerkin and the collocation techniques is effective for mode III fracture problems.
文摘This paper is devoted to the application of branch mode method in the critical speed ana-lysis of compound rotating systems, in which the distributed inertia including gyroscopic effectand distributed elastic support are taken into account. Finally, the method introduced in this paper is used to calculate the critical speeds of anew-type spindle on the spinning frame. The first three critical Speeds are calculated and com-pared with the values obtained from the experimental approach and other theoretical methods.The results show that they are in good agreement with each other.
文摘This paper presents the development of a highly efficient CT-PCF (Core-Tune Photonic Crystal Fiber) with substantial birefringence, tailored for applications in high-bit-rate communication and sensing while minimizing signal loss. The design incorporates a modified broadband dispersion compensating structure, optimized for operation across the E, S, C, and L communication bands within a wavelength range spanning 1360 nm to 1625 nm. Notably, the CT-PCF demonstrates a remarkable birefringence of 2.372 × 10<sup>-2</sup> at 1550 nm, surpassing traditional PCF structures. Single-mode performance is evaluated using the Higher Order Mode Extinction Ratio (HOMER) method, revealing a peak HOMER value of 10<sup>4</sup> at 1550 nm. Furthermore, at 1550 nm, the CT-PCF exhibits exceptional nonlinear characteristics, featuring a high nonlinearity of 50.74 W<sup>-1</sup>⋅Km<sup>-1</sup> for y polarization. In comparison to existing designs, the proposed CT-PCF exhibits superior performance metrics and optical characteristics. Additionally, the y polarization dispersion coefficient of the CT-PCF at 1550 nm is measured at -3534 ps/(nm⋅km). Overall, the CT-PCF represents a significant advancement, outperforming established systems in terms of performance metrics and optical properties.